低温等离子体抛光技术在芯片材料加工中的研究进展

作者

  • 闫辉 北京化工大学,北京市 100029,中国
  • 薛爽 北京化工大学,北京市 100029,中国
  • 郭佩文 北京化工大学,北京市 100029,中国
  • 贺家乐 北京化工大学,北京市 100029,中国
  • 王光宁 北京化工大学,北京市 100029,中国
  • 曾银龙 北京化工大学,北京市 100029,中国
  • 郄龙飞 北京化工大学,北京市 100029,中国
  • 王瑞雪 北京化工大学,北京市 100029,中国
Article ID: 226
22 Views, 15 PDF Downloads

DOI:

https://doi.org/10.18686/cncest226

关键词:

低温等离子体抛光芯片材料;等离子体辅助抛光(PAP);等离子体电解处理辅助抛光(PEP-MP);等离子体化学汽化加工(PCVM);等离子体选择刻蚀技术(PASE)

摘要

低温等离子体抛光技术利用其高度电离的特性,能够精确去除芯片材料表面的微小缺陷和杂质,提高芯片材料的平整度和光洁度,减少机械损伤和亚表面损伤,同时具有较高的材料去除率。本文综述了等离子体抛光技术在芯片材料加工领域的应用现状、优势及其局限性。具体探讨了等离子体辅助抛光(PAP)、等离子体化学气化加工(PCVM)、等离子体电解处理辅助抛光(PEP-MP)和等离子体选择刻蚀(PASE)等工艺技术的原理及应用,分析了其优势与局限性,最后对等离子体芯片抛光技术的发展进了展望,旨在为芯片制造工艺的持续改进和微电子产业的未来发展提供有益参考。

参考

Zhang H, Qu Z, Tang H, et al. On-Chip Integration of a Covalent Organic Framework-Based Catalyst into a Miniaturized Zn–Air Battery with High Energy Density. ACS Energy Letters. 2021; 6(7): 2491-2498. doi: 10.1021/acsenergylett.1c00768

Qi D, Liu Y, Liu Z, et al. Design of Architectures and Materials in In‐Plane Micro‐supercapacitors: Current Status and Future Challenges. Advanced Materials. 2016; 29(5). doi: 10.1002/adma.201602802

Peng Y, Akuzum B, Kurra N, et al. All-MXene (2D titanium carbide) solid-state microsupercapacitors for on-chip energy storage. Energy & Environmental Science. 2016; 9(9): 2847-2854. doi: 10.1039/c6ee01717g

Song Y, Wang J, Liang L. Thickness effect on the mechanical performance of cathodes in lithium-ion batteries. Journal of Energy Storage. 2024; 86: 111417. doi: 10.1016/j.est.2024.111417

Chaniotakis N, Sofikiti N. Novel semiconductor materials for the development of chemical sensors and biosensors: A review. Analytica Chimica Acta. 2008; 615(1): 1-9. doi: 10.1016/j.aca.2008.03.046

李强. 集成电路芯片制造技术与工艺分析. 数字技术与应用. 2023; 41(12): 46-48. doi: 10.19695/j.cnki.cn12-1369.2023.12.14

Li Q. Integrated Circuit Chip Manufacturing Technology and Process Analysis (Chinese). Digital Technology & Application. 2023; 41(12): 46-48. doi: 10.19695/j.cnki.cn12-1369.2023.12.14

Lyons JL, Wickramaratne D, Janotti A. Dopants and defects in ultra-wide bandgap semiconductors. Current Opinion in Solid State and Materials Science. 2024; 30: 101148. doi: 10.1016/j.cossms.2024.101148

Jiang K, Zhang P, Song S, et al. A review of ultra-short pulse laser micromachining of wide bandgap semiconductor materials: SiC and GaN. Materials Science in Semiconductor Processing. 2024; 180: 108559. doi: 10.1016/j.mssp.2024.108559

张倩. 中国第三代半导体产业发展研究. 科技广场. 2024; 2: 19-25. doi: 10.13838/j.cnki.kjgc.2024.02.008

Zhang Q. Research on the development of China’s third-generation semiconductor industry (Chinese). Science and Technology Square. 2024; 2: 19-25. doi: 10.13838/j.cnki.kjgc.2024.02.008

Casady JB, Johnson RW. Status of silicon carbide (SiC) as a wide-bandgap semiconductor for high-temperature applications: A review. Solid-State Electronics. 1996; 39(10): 1409-1422. doi: 10.1016/0038-1101(96)00045-7

胡单辉, 林倩, 邬海峰, 等. 半导体技术发展趋势探究——以射频功率放大器为例. 桂林电子科技大学学报. 2023; 43(4): 271-281. doi: 10.16725/j.cnki.cn45-1351/tn.2023.04.001

Hu D, Lin Q, Wu H, et al. Exploration of semiconductor technology development trends—Taking RF power amplifiers as an example (Chinese). Journal of Guilin University of Electronic Technology. 2023; 43(4): 271-281. doi: 10.16725/j.cnki.cn45-1351/tn.2023.04.001

张园览, 张清纯. SiC芯片微型化及发展趋势. 机车电传动. 2023; 5: 46-62. doi: 10.13890/j.issn.1000-128X.2023.05.005

Zhang Y, Zhang Q. SiC chip miniaturization and development trend (Chinese). Electric Drive for Locomotives. 2023; 5: 46-62. doi: 10.13890/j.issn.1000-128X.2023.05.005

Srivastava M, Singh J, Mishra DK, et al. Review on the various strategies adopted for the polishing of silicon wafer—A chemical perspective. Materials Today: Proceedings. 2022; 63: 62-68. doi: 10.1016/j.matpr.2022.02.300

Dong Z, Lin Y. Ultra-thin wafer technology and applications: A review. Materials Science in Semiconductor Processing. 2020; 105: 104681. doi: 10.1016/j.mssp.2019.104681

张睿, 虞小鹏, 程然, 等. 集成电路先进制造技术进展与趋势. 数据与计算发展前沿. 2021; 3(5): 28-39.

Zhang R, Yu X, Cheng R, et al. Progress and Trends in Integrated Circuit Advanced Manufacturing Technology (Chinese). Frontiers of Data & Computing. 2021; 3(5): 28-39.

Dranczewski J, Fischer A, Tiwari P, et al. Plasma etching for fabrication of complex nanophotonic lasers from bonded InP semiconductor layers. Micro and Nano Engineering. 2023; 19: 100196. doi: 10.1016/j.mne.2023.100196

Baek KH, Edgar TF, Song K, et al. An effective procedure for sensor variable selection and utilization in plasma etching for semiconductor manufacturing. Computers & Chemical Engineering. 2014; 61: 20-29. doi: 10.1016/j.compchemeng.2013.09.016

Qin Y, Zhao C, Gao F. Multi-stage Process Analysis and Modelling based Online Monitoring for Chip Packaging Process. IFAC-PapersOnLine. 2015; 48(28): 993-998. doi: 10.1016/j.ifacol.2015.12.260

Kong X, Li S, Li H, et al. Distribution patterns of reactive species in the interaction between atmospheric pressure plasma jet and fiber membrane. Plasma Sources Science and Technology. 2023; 32(10): 105004. doi: 10.1088/1361-6595/acfd5b

Kong X, Li H, Yang W, et al. Atmospheric pressure plasma jet impinging on fiber arrays: Penetration pattern determined by fiber spacing. Applied Physics Letters. 2023; 122(8). doi: 10.1063/5.0139361

Ma G, Li S, Liu F, et al. A Review on Precision Polishing Technology of Single-Crystal SiC. Crystals. 2022; 12(1): 101. doi: 10.3390/cryst12010101

Li Z, Jiang F, Jiang Z, et al. Energy beam-based direct and assisted polishing techniques for diamond: A review. International Journal of Extreme Manufacturing. 2023; 6(1): 012004. doi: 10.1088/2631-7990/acfd67

Geng Z, Huang N, Castelli M, et al. Polishing Approaches at Atomic and Close-to-Atomic Scale. Micromachines. 2023; 14(2): 343. doi: 10.3390/mi14020343

Zong WJ, Cheng X, Zhang JJ. Atomistic origins of material removal rate anisotropy in mechanical polishing of diamond crystal. Carbon. 2016; 99: 186-194. doi: 10.1016/j.carbon.2015.12.001

Luo Q, Lu J, Xu X, et al. Removal mechanism of sapphire substrates (0001, 112(–)0 and 101(–)0) in mechanical planarization machining. Ceramics International. 2017; 43(18): 16178-16184. doi: 10.1016/j.ceramint.2017.08.194

Kubota A, Fukuyama S, Ichimori Y, et al. Surface smoothing of single-crystal diamond (100) substrate by polishing technique. Diamond and Related Materials. 2012; 24: 59-62. doi: 10.1016/j.diamond.2011.10.022

Kubota A, Nagae S, Touge M. Improvement of material removal rate of single-crystal diamond by polishing using H2O2 solution. Diamond and Related Materials. 2016; 70: 39-45. doi: 10.1016/j.diamond.2016.09.028

Tatsumi N, Harano K, Ito T, et al. Polishing mechanism and surface damage analysis of type IIa single crystal diamond processed by mechanical and chemical polishing methods. Diamond and Related Materials. 2016; 63: 80-85. doi: 10.1016/j.diamond.2015.11.021

Li Q, Liu L, Yu J, et al. Investigation on chemical mechanical polishing of Ga-faced GaN crystal with weak alkaline slurry. Applied Surface Science. 2024; 653: 159396. doi: 10.1016/j.apsusc.2024.159396

Deng H, Hosoya K, Imanishi Y, et al. Electro-chemical mechanical polishing of single-crystal SiC using CeO2 slurry. Electrochemistry Communications. 2015; 52: 5-8. doi: 10.1016/j.elecom.2015.01.002

Hu Y, Shi D, Hu Y, et al. Investigation on the Material Removal and Surface Generation of a Single Crystal SiC Wafer by Ultrasonic Chemical Mechanical Polishing Combined with Ultrasonic Lapping. Materials. 2018; 11(10): 2022. doi: 10.3390/ma11102022

Chen G, Pan L, Luo H, et al. Chemical mechanical polishing of silicon carbide (SiC) based on coupling effect of ultrasonic vibration and catalysis. Journal of Environmental Chemical Engineering. 2023; 11(5): 111080. doi: 10.1016/j.jece.2023.111080

Deng H, Hosoya K, Imanishi Y, et al. Electro-chemical mechanical polishing of single-crystal SiC using CeO2 slurry. Electrochemistry Communications. 2015; 52: 5-8. doi: 10.1016/j.elecom.2015.01.002

王磊. 碳化硅晶体电化学机械抛光工艺研究 [硕士论文]. 大连理工大学; 2022.

Wang L. Research on Electrochemical Mechanical Polishing Process of Silicon Carbide Crystals (Chinese) [Master’s thesis]. Dalian University of Technology; 2022.

Sidpara A, Jain VK. Nano–level finishing of single crystal silicon blank using magnetorheological finishing process. Tribology International. 2012; 47: 159-166. doi: 10.1016/j.triboint.2011.10.008

Ma X, Tian Y, Qian C, et al. Experimental investigation on magnetorheological shear thickening polishing characteristics for SiC substrate. Ceramics International. 2024; 50(20): 40069-40078. doi: 10.1016/j.ceramint.2024.07.392

Jang KI, Nam E, Lee CY, et al. Mechanism of synergetic material removal by electrochemomechanical magnetorheological polishing. International Journal of Machine Tools and Manufacture. 2013; 70: 88-92. doi: 10.1016/j.ijmachtools.2013.03.011

Saraswathamma K, Jha S, Venkateswara Rao P. Rheological behaviour of Magnetorheological polishing fluid for Si polishing. Materials Today: Proceedings. 2017; 4(2): 1478-1491. doi: 10.1016/j.matpr.2017.01.170

Yin T, Zhao P, Doi T, et al. Effect of Using High-Pressure Gas Atmosphere with UV Photocatalysis on the CMP Characteristics of a 4H-SiC Substrate. ECS Journal of Solid State Science and Technology. 2021; 10(2): 024010. doi: 10.1149/2162-8777/abe7a8

Lu J, Wang Y, Luo Q, et al. Photocatalysis assisting the mechanical polishing of a single-crystal SiC wafer utilizing an anatase TiO2-coated diamond abrasive. Precision Engineering. 2017; 49: 235-242. doi: 10.1016/j.precisioneng.2017.02.011

Kawabata Y, Taniguchi J, Miyamoto I. XPS studies on damage evaluation of single-crystal diamond chips processed with ion beam etching and reactive ion beam assisted chemical etching. Diamond and Related Materials. 2004; 13(1): 93-98. doi: 10.1016/j.diamond.2003.09.005

罗求发, 陈杰铭, 程志豪, 陆静. 碳化硅衬底磨抛加工技术的研究进展与发展趋势. 湖南大学学报(自然科学版). 2024; 51(4): 140-152. doi: 10.16339/j.cnki.hdxbzkb.2024180

Luo Q, Chen J, Cheng Z, Lu J. Research progress and development trend of grinding and polishing technology of silicon carbide substrate (Chinese). Journal of Hunan University (Natural Sciences). 2024; 51(4): 140-152. doi: 10.16339/j.cnki.hdxbzkb.2024180

钮市伟, 陈瑶, 王永光, 等. 氮化镓晶片的化学机械抛光工艺. 科学技术与工程. 2020; 20(19): 7639-7643.

Niu S, Chen Y, Wang Y, et al. Chemical mechanical polishing process of gallium nitride chips (Chinese). Science Technology and Engineering. 2020; 20(19): 7639-7643.

孙兴汉, 李纪虎, 张伟, 等. 碳化硅化学机械抛光中材料去除非均匀性研究进展. 人工晶体学报. 2024; 53(4): 585-599. doi: 10.16553/j.cnki.issn1000-985x.20240013.001

Sun X, Li J, Zhang W, et al. Research progress on material removal non-uniformity in chemical mechanical polishing of silicon carbide (Chinese). Journal of Synthetic Crystals. 2024; 53(4): 585-599. doi: 10.16553/j.cnki.issn1000-985x.20240013.001

徐慧敏, 王建彬, 李庆安, 潘飞. 碳化硅晶片的化学机械抛光技术研究进展. 现代制造工程. 2022; 6: 153-161+116.

Xu H, Wang J, Li Q, Pan F. Research progress in chemical mechanical polishing of silicon carbide wafers (Chinese). Modern Manufacturing Engineering. 2022; 6: 153-161+116.

李运鹤. 碳化硅晶圆化学机械抛光工艺优化实验研究 [硕士论文]. 河南工业大学; 2023.

Li Y. Experimental Study on Optimization of Chemical Mechanical Polishing Process for Silicon Carbide Wafer (Chinese) [Master’s thesis]. Henan University of Technology; 2023.

李华, 任坤, 殷振, 等. 超声振动辅助磨料流抛光技术研究综述. 机械工程学报. 2021; 57(9): 233-253.

Li H, Ren K, Yin Z, et al. A review of research on ultrasonic vibration assisted abrasive flow polishing technology (Chinese). Journal of Mechanical Engineering. 2021; 57(9): 233-253.

陈刚, 肖强. 单晶蓝宝石基片抛光工艺研究进展. 工具技术. 2018; 52(3): 3-9. doi: 10.16567/j.cnki.1000-7008.2018.03.001

Chen G, Xiao Q. Research progress on polishing process of single crystal sapphire substrate (Chinese). Tool Engineering. 2018; 52(3): 3-9. doi: 10.16567/j.cnki.1000-7008.2018.03.001

唐爱玲. 振动辅助光催化抛光碳化硅机理研究 [硕士论文]. 沈阳工业大学; 2023.

Tang A. Research on the Mechanism of Vibration Assisted Photocatalytic Polishing of Silicon Carbide (Chinese) [Master’s thesis]. Shenyang University of Technology; 2023.

Zhu X, Gui Y, Fu H, et al. Photocatalytic assisted chemical mechanical polishing for silicon carbide using developed ceria coated diamond core-shell abrasives. Tribology International. 2024; 197: 109827. doi: 10.1016/j.triboint.2024.109827

Xiao H, Dai Y, Duan J, et al. Material removal and surface evolution of single crystal silicon during ion beam polishing. Applied Surface Science. 2021; 544: 148954. doi: 10.1016/j.apsusc.2021.148954

Mi S, Toros A, Graziosi T, et al. Non-contact polishing of single crystal diamond by ion beam etching. Diamond and Related Materials. 2019; 92: 248-252. doi: 10.1016/j.diamond.2019.01.007

Yamamura K, Takiguchi T, Ueda M, et al. High-Integrity Finishing of 4H-SiC (0001) by Plasma-Assisted Polishing. Advanced Materials Research. 2010; 126-128: 423-428. doi: 10.4028/www.scientific.net/amr.126-128.423

Deng H, Yamamura K. Atomic-scale flattening mechanism of 4H-SiC (0001) in plasma assisted polishing. CIRP Annals. 2013; 62(1): 575-578. doi: 10.1016/j.cirp.2013.03.028

Deng H, Ueda M, Yamamura K. Characterization of 4H-SiC (0001) surface processed by plasma-assisted polishing. The International Journal of Advanced Manufacturing Technology. 2014; 72: 1-7. doi: 10.1007/s00170-012-4430-7

吉建伟, 山村和也, 邓辉. 面向单晶SiC原子级表面制造的等离子体辅助抛光技术. 物理学报. 2021; 70(6): 74-86.

Ji J, Yamamura K, Deng H. Plasma assisted polishing technology for manufacturing single-crystal SiC atomic level surfaces (Chinese). Acta Physica Sinica. 2021; 70(6): 74-86.

Sun R, Yang X, Arima K, et al. High-quality plasma-assisted polishing of aluminum nitride ceramic. CIRP Annals. 2020; 69(1): 301-304. doi: 10.1016/j.cirp.2020.04.096

Deng H, Endo K, Yamamura K. Plasma-assisted polishing of gallium nitride to obtain a pit-free and atomically flat surface. CIRP Annals. 2015; 64(1): 531-534. doi: 10.1016/j.cirp.2015.04.002

Peguiron A, Moras G, Walter M, et al. Activation and mechanochemical breaking of C–C bonds initiate wear of diamond (110) surfaces in contact with silica. Carbon. 2016; 98: 474-483. doi: 10.1016/j.carbon.2015.10.098

Yamamura K, Emori K, Sun R, et al. Damage-free highly efficient polishing of single-crystal diamond wafer by plasma-assisted polishing. CIRP Annals. 2018; 67(1): 353-356. doi: 10.1016/j.cirp.2018.04.074

Luo H, Ajmal KM, Liu W, et al. Atomic-scale and damage-free polishing of single crystal diamond enhanced by atmospheric pressure inductively coupled plasma. Carbon. 2021; 182: 175-184. doi: 10.1016/j.carbon.2021.05.062

Liu N, Sugimoto K, Yoshitaka N, et al. Effects of polishing pressure and sliding speed on the material removal mechanism of single crystal diamond in plasma-assisted polishing. Diamond and Related Materials. 2022; 124: 108899. doi: 10.1016/j.diamond.2022.108899

Nestler K, Böttger-Hiller F, Adamitzki W, et al. Plasma Electrolytic Polishing – An Overview of Applied Technologies and Current Challenges to Extend the Polishable Material Range. Procedia CIRP. 2016; 42: 503-507. doi: 10.1016/j.procir.2016.02.240

Huang Y, Wang C, Ding F, et al. Principle, process, and application of metal plasma electrolytic polishing: a review. The International Journal of Advanced Manufacturing Technology. 2021; 114(7-8): 1893-1912. doi: 10.1007/s00170-021-07012-7

Ma G, Li S, Liu X, et al. Combination of Plasma Electrolytic Processing and Mechanical Polishing for Single-Crystal 4H-SiC. Micromachines. 2021; 12(6): 606. doi: 10.3390/mi12060606

张晨. SiC单晶超声辅助电解液等离子体抛光仿真及实验研究 [硕士论文]. 西安理工大学; 2023. pp. 13-20.

Zhang C. Simulation and Experimental Study on Ultrasonic Assisted Electrolyte Plasma Polishing of SiC Single Crystal (Chinese) [Master’s thesis]. Xi’an University of Technology; 2023. pp. 13-20.

Liu N, Yi R, Deng H. Study of initiation and development of local oxidation phenomena during anodizing of SiC. Electrochemistry Communications. 2018; 89: 27-31. doi: 10.1016/j.elecom.2018.02.013

Chen Y, Yi J, Wang Z, et al. Experimental study on ultrasonic-assisted electrolyte plasma polishing of SUS304 stainless steel. The International Journal of Advanced Manufacturing Technology. 2022; 124(7-8): 2835-2846. doi: 10.1007/s00170-022-10646-w

Sano Y, Watanabe M, Yamamura K, et al. Polishing Characteristics of Silicon Carbide by Plasma Chemical Vaporization Machining. Japanese Journal of Applied Physics. 2006; 45(10B): 8277. doi: 10.1143/jjap.45.8277

Nakahama Y, Kanetsuki N, Funaki T, et al. Etching characteristics of GaN by plasma chemical vaporization machining. Surface and Interface Analysis. 2008; 40(12): 1566-1570. doi: 10.1002/sia.2955

Yamamura K, Yamamoto Y, Deng H. Preliminary Study on Chemical Figuring and Finishing of Sintered SiC Substrate Using Atmospheric Pressure Plasma. Procedia CIRP. 2012; 3: 335-339. doi: 10.1016/j.procir.2012.07.058

Nakanishi Y, Mukai R, Matsuyama S, et al. Cause of Etch Pits during the High Speed Plasma Etching of Silicon Carbide and an Approach to Reduce their Size. Materials Science Forum. 2020; 1004: 161-166. doi: 10.4028/www.scientific.net/msf.1004.161

Ueda M, Shibahara M, Zettsu N, et al. Effect of Substrate Heating in Thickness Correction of Quartz Crystal Wafer by Plasma Chemical Vaporization Machining. Key Engineering Materials. 2010; 447-448: 218-222. doi: 10.4028/www.scientific.net/kem.447-448.218

Fang Z, Zhang Y, Li R, et al. An efficient approach for atomic-scale polishing of single-crystal silicon via plasma-based atom-selective etching. International Journal of Machine Tools and Manufacture. 2020; 159: 103649. doi: 10.1016/j.ijmachtools.2020.103649

房之栋. 大气压等离子体横向刻蚀抛光单晶硅晶圆的工艺研究 [硕士论文]. 哈尔滨工业大学; 2020.

Fang Z. Study on the Process of Atmospheric Pressure Plasma Lateral Etching and Polishing of Single Crystal Silicon Wafers (Chinese) [Master’s thesis]. Harbin Institute of Technology; 2020.

Zhang L, Wu B, Zhang Y, et al. Highly efficient and atomic scale polishing of GaN via plasma-based atom-selective etching. Applied Surface Science. 2023; 620: 156786. doi: 10.1016/j.apsusc.2023.156786

Liu W, Xiao Y, Zhang Y, et al. Highly efficient and atomic-scale smoothing of single crystal diamond through plasma-based atom-selective etching. Diamond and Related Materials. 2024; 143: 110840. doi: 10.1016/j.diamond.2024.110840

##submission.downloads##

已出版

2024-11-21

文章引用

闫辉, 薛爽, 郭佩文, 贺家乐, 王光宁, 曾银龙, 郄龙飞, & 王瑞雪. (2024). 低温等离子体抛光技术在芯片材料加工中的研究进展. 清洁能源科学与技术, 2(4), 226. https://doi.org/10.18686/cncest226

栏目

原创研究型文章