面向太阳能全光谱有效利用的分光技术浅析

作者

  • 尹贵庆 北京化工大学,北京市 100029,中国
  • 贾兴运 北京化工大学,北京市 100029,中国
  • 苗智灏 北京化工大学,北京市 100029,中国
  • 倪睿 北京化工大学,北京市 100029,中国
Ariticle ID: 216
160 Views, 16 PDF Downloads

DOI:

https://doi.org/10.18686/cncest.v2i4.216

关键词:

太阳能全光谱;新型槽式太阳能聚集与光运输装置;光导纤维;罗兰圆分光;分光利用

摘要

本文基于槽式抛物面聚光镜,提出了一种通过光导纤维进行光线传输的太阳能全光谱有效利用的分光技术,其中包括聚集、传输、分光、检测应用四部分的技术,探讨其在清洁能源领域的应用。装置中引入单向玻璃作为光线传输约束装置。单向玻璃的单向透射性有效保证了太阳光的传输方向。经TracePro软件的光线模拟结果知光线经过单向玻璃反射装置的输送后,可以保证光强度满足使用要求。再经过准直透镜、菲涅尔透镜聚焦后,光线将通过光导纤维导入罗兰圆分光系统。分光后各类光经过检测系统将分别被导入各自的光导纤维中进行远距离传输及运用。经过实验,通过合理装置的分光并针对性的利用不同波段,可显著提高太阳能全光谱的有效利用途径,验证了该装置设计思路的可行性。

参考

Bai S, Zhang N, Gao C, et al. Defect engineering in photocatalytic materials. Nano Energy. 2018; 53: 296-336. doi: 10.1016/j.nanoen.2018.08.058

秦宏宇, 柯义虎, 李景云, 等. 光热协同效应在催化反应中的应用研究进展. 分子催化. 2021; 35(4): 375-389. doi: 10.16084/j.issn1001-3555.2021.04.008

Qin H, Ke Y, Li J, et al. Research progress on the application of photothermal synergistic effect in catalytic reactions (Chinese). Journal of Molecular Catalysis (China). 2021; 35(4): 375-389. doi: 10.16084/j.issn1001-3555.2021.04.008

Li Q, Lu G. Significant Effect of Pressure on the H2 Releasing from Photothermal-Catalytic Water Steam Splitting over TiSi2 and Pt/TiO2. Catalysis Letters. 2008; 125(3-4): 376-379. doi: 10.1007/s10562-008-9548-8

刘晓曼, 王超, 高吉喜, 等. 服务双碳目标的中国人工林生态系统碳增汇途径. 生态学报. 2023; 43(14): 5662-5673.

Liu X, Wang C, Gao J, et al. Carbon sink enhancement pathways for China’s artificial forest ecosystems serving dual carbon goals (Chinese). Acta Ecologica Sinica. 2023; 43(14): 5662-5673.

王佳忍, 何凯, 李春雷, 等. 太阳能光热催化制氢研究进展. 工业催化. 2024; 32(2): 20-25.

Wang J. He K, Li C, et al. Research progress of solar thermal catalytic hydrogen production (Chinese). Industrial Catalysis. 2024; 32(2): 20-25.

Kalogirou S. Seawater desalination using renewable energy sources. Progress in Energy and Combustion Science. 2005; 31(3): 242-281. doi: 10.1016/j.pecs.2005.03.001

Kamat PV. Meeting the Clean Energy Demand: Nanostructure Architectures for Solar Energy Conversion. The Journal of Physical Chemistry C. 2007; 111(7): 2834-2860. doi: 10.1021/jp066952u

Chu S, Majumdar A. Opportunities and challenges for a sustainable energy future. Nature. 2012; 488(7411): 294-303. doi: 10.1038/nature11475

Panwar NL, Kaushik SC, Kothari S. Role of renewable energy sources in environmental protection: A review. Renewable and Sustainable Energy Reviews. 2011; 15(3): 1513-1524. doi: 10.1016/j.rser.2010.11.037

曲万军. 槽式聚光太阳能光伏—光热化学互补机理与方法研究 [博士论文]. 中国科学院大学; 2019. doi: 10.27540/d.cnki.ggrws.2019.000002

Qu W. Research on the Mechanism and Method of Complementary Photovoltaic-Photothermal-Chemical Trough-Type Concentrated Solar Energy (Chinese) [PhD thesis]. University of Chinese Academy of Sciences; 2019. doi: 10.27540/d.cnki.ggrws.2019.000002

李霜. 新型菲涅尔聚光器结构优化设计 [硕士论文]. 电子科技大学; 2018.

Li S. Optimization Design of New Fresnel Concentrator Structure (Chinese) [Master’s thesis]. University of Electronic Science and Technology of China; 2018.

李浩岳. 分光式两级聚光太阳能光纤耦合传能系统 [硕士论文]. 东华大学; 2022.

Li H. Splitting Two-Stage Concentrated Solar Fiber Coupled Energy Transmission System (Chinese) [Master’s thesis]. Donghua University; 2022.

Granqvist CG. Solar Energy Materials. Advanced Materials. 2003; 15(21): 1789-1803. doi: 10.1002/adma.200300378

Gueymard CA. The sun’s total and spectral irradiance for solar energy applications and solar radiation models. Solar Energy. 2004; 76(4): 423-453. doi: 10.1016/j.solener.2003.08.039

陈希. CCD火花直读光谱仪光机结构设计 [硕士论文]. 华中科技大学; 2016.

Chen X. Optical-Mechanical Structure Design of CCD Spark Direct-Reading Spectrometer (Chinese) [Master’s thesis]. Huazhong University of Science and Technology; 2016.

鲁毅, 任万杰, 郭国建, 等. 双罗兰圆结构光谱仪的光学系统设计. 应用光学. 2022; 43(3): 415-423.

Lu Y, Ren W, Guo, G, et al. Optical system design of double Roland circle spectrometer (Chinese). Journal of Applied Optics. 2022; 43(3): 415-423.

##submission.downloads##

已出版

2024-10-09

文章引用

尹贵庆, 贾兴运, 苗智灏, & 倪睿. (2024). 面向太阳能全光谱有效利用的分光技术浅析. 清洁能源科学与技术, 2(4), 216. https://doi.org/10.18686/cncest.v2i4.216

栏目

原创研究型文章