可再生能源技术在应对全球变暖现象和减少温室气体排放方面的贡献
DOI:
https://doi.org/10.18686/cncest.v2i2.203关键词:
可再生能源;全球变暖;温室效应;气候变化;温室气体(GHG)排放;碳排放;可持续能源摘要
化石能源的使用是全球变暖(global warming,GW)的重要原因,占全球温室气体排放量的75%以上,约占所有二氧化碳排放量的90%。依靠可再生能源(renewable energy,RE)替代化石能源来减轻能源部门的碳排放至关重要。到2050年,可再生能源有可能消除发电行业中90%的碳排放,大大减少碳排放有助于减轻GW的影响。通过强调零排放的概念,可再生能源的未来变得充满希望,有可能取代化石燃料,到2050年将全球气温上升限制在1.5 ℃以内。本文探讨了可再生能源技术及其在多个领域的应用对减轻GW的作用,研究了支持可再生能源政策的趋势和成功案例,并探索了减轻气候变化影响和实现清洁能源未来的可用选项。此外,可再生能源为化石燃料提供了一种清洁和可持续的替代品,减少了对化石燃料的依赖并最大限度地减少了温室气体排放。本文还重点介绍了中国、美国、印度、德国等主要国家在开发和利用可再生能源方面所做的努力。这些国家的可再生能源战略反映了它们为当代和子孙后代的福祉而应对全球变暖和减少有害排放的承诺。
参考
Candra O, Chammam A, Alvarez JRN, et al. The impact of renewable energy sources on the sustainable development of the economy and greenhouse gas emissions. Sustainability. 2023; 15(3): 2104. doi: 10.3390/su15032104
Azizi H, Nejatian N. Evaluation of the climate change impact on the intensity and return period for drought indices of SPI and SPEI (study area: Varamin plain). Water Supply. 2022; 22(4): 4373-4386. doi: 10.2166/ws.2022.056
Molajou A, Pouladi P, Afshar A. Incorporating social system into water-food-energy nexus. Water Resources Management. 2021; 35: 4561-4580. doi: 10.1007/s11269-021-02967-4
Sharifpur M, Ahmadi MH, Rungamornrat J, et al. Thermal management of solar photovoltaic cell by using single walled carbon nanotube (SWCNT)/water: numerical simulation and sensitivity analysis. Sustainability. 2022; 14(18): 11523. doi: 10.3390/su141811523
Kandemir SY, Ozgur Yayli M, Acikkalp E. Assessment of Electric Energy Generation using Wind Energy in Turkey. 7th Iran Wind Energy Conference (IWEC2021). Published online May 17, 2021. doi: 10.1109/iwec52400.2021.9467019
Li L, Lin J, Wu N, et al. Review and outlook on the international renewable energy development. Energy and Built Environment. 2022; 3(2): 139-157. doi: 10.1016/j.enbenv.2020.12.002
Zou C, Xiong B, Xue H, et al. The Role of New Energy in Carbon Neutral. Petroleum Exploration and Development. 2021; 48, 480–491. doi: 10.1016/S1876-3804(21)60039-3
Abdullah WSW, Osman M, Ab Kadir MZA, et al. The Potential and Status of Renewable Energy Development in Malaysia. Energies. 2019; 12(12): 2437. doi: 10.3390/en12122437
Qadir SA, Al-Motairi H, Tahir F, et al. Incentives and strategies for financing the renewable energy transition: A review. Energy Reports. 2021; 7: 3590-3606. doi: 10.1016/j.egyr.2021.06.041
Markaki M, Belegri-Roboli A, Michaelides P, et al. The impact of clean energy investments on the Greek economy: An input–output analysis (2010–2020). Energy Policy. 2013; 57: 263-275. doi: 10.1016/j.enpol.2013.01.047
Potrč S, Čuček L, Martin M, et al. Sustainable renewable energy supply networks optimization – The gradual transition to a renewable energy system within the European Union by 2050. Renewable and Sustainable Energy Reviews. 2021; 146: 111186. doi: 10.1016/j.rser.2021.111186
Alawida M, Samsudin A, Teh JS. Enhanced digital chaotic maps based on bit reversal with applications in random bit generators. Information Sciences. 2020; 512: 1155-1169. doi: 10.1016/j.ins.2019.10.055
Smirnova E, Kot S, Kolpak E, et al. Governmental support and renewable energy production: A cross-country review. Energy. 2021; 230: 120903. doi: 10.1016/j.energy.2021.120903
Wang B, Zhao W. Interplay of renewable energy investment efficiency, shareholder control and green financial development in China. Renewable Energy. 2022; 199: 192-203. doi: 10.1016/j.renene.2022.08.122
Li Y, Ramzan M, Li X, et al. Determinants of carbon emissions in Argentina: The roles of renewable energy consumption and globalization. Energy Reports. 2021; 7: 4747-4760. doi: 10.1016/j.egyr.2021.07.065
Zahraoui Y, Khan MRB, AlHamrouni I, et al. Current Status, Scenario, and Prospective of Renewable Energy in Algeria: A Review. Energies. 2021; 14(9): 2354. doi: 10.3390/en14092354
Li R, Leung GCK. The relationship between energy prices, economic growth and renewable energy consumption: Evidence from Europe. Energy Reports. 2021; 7: 1712-1719. doi: 10.1016/j.egyr.2021.03.030
Levenda AM, Behrsin I, Disano F. Renewable energy for whom? A global systematic review of the environmental justice implications of renewable energy technologies. Energy Research & Social Science. 2021; 71: 101837. doi: 10.1016/j.erss.2020.101837
Dickert C, Parker S. What electricity sources power the world? Available online: https://www.visualcapitalist.com/electricity-sources-by-fuel-in-2022/ (accessed on 1 July 2024).
Wall WP, Khalid B, Urbański M, et al. Factors Influencing Consumer’s Adoption of Renewable Energy. Energies. 2021; 14(17): 5420. doi: 10.3390/en14175420
Jin L, Chang Y-H, Wang M, et al. The dynamics of CO2 emissions, energy consumption, and economic development: evidence from the top 28 greenhouse gas emitters. Environmental Science and Pollution Research. 2022; 29(24): 36565-36574. doi: 10.1007/s11356-021-18069-y
Wang Q, Wang L, Li R. Trade protectionism jeopardizes carbon neutrality—Decoupling and breakpoints roles of trade openness. Sustainable Production and Consumption. 2023; 35: 201-215. doi: 10.1016/j.spc.2022.08.034
Wang Q, Zhang F, Li R. Revisiting the environmental Kuznets curve hypothesis in 208 counties: The roles of trade openness, human capital, renewable energy and natural resource rent. Environmental Research. 2023; 216: 114637. doi: 10.1016/j.envres.2022.114637
Wang Q, Yang T, Li R. Does income inequality reshape the environmental Kuznets curve (EKC) hypothesis? A nonlinear panel data analysis. Environmental Research. 2023; 216: 114575. doi: 10.1016/j.envres.2022.114575
Barthelmie RJ, Pryor SC. Climate Change Mitigation Potential of Wind Energy. Climate. 2021; 9(9): 136. doi: 10.3390/cli9090136
Odeh NA, Cockerill TT. Life cycle GHG assessment of fossil fuel power plants with carbon capture and storage. Energy Policy. 2008; 36(1): 367-380. doi: 10.1016/j.enpol.2007.09.026
Spath PL, Mann MK. Life cycle assessment of a natural gas combined-cycle power generation system. Available online: https://www.nrel.gov/docs/fy00osti/27715.pdf (accessed on 28 May 2024).
Dolan SL, Heath GA. Life Cycle Greenhouse Gas Emissions of Utility‐Scale Wind Power. Journal of Industrial Ecology. 2012; 16(s1). doi: 10.1111/j.1530-9290.2012.00464.x
Fthenakis VM, Kim HC. Greenhouse-gas emissions from solar electric- and nuclear power: A life-cycle study. Energy Policy. 2007; 35(4): 2549-2557. doi: 10.1016/j.enpol.2006.06.022
National Renewable Energy Laboratory (NREL). Life Cycle Greenhouse Gas Emissions from Electricity Generation: Update. Available online: https://www.nrel.gov/docs/fy21osti/80580.pdf (accessed on 28 May 2024).
IEA. Key World Energy Statistics 2020. Available online: https://www.iea.org/reports/key-world-energy-statistics-2020 (accessed on 28 May 2024).
Edenhofer O, Pichs-Madruga R, Sokona Y, et al., eds. Renewable Energy Sources and Climate Change Mitigation. Cambridge University Press; 2011. doi: 10.1017/cbo9781139151153
Carola PT. A methodology and a mathematical model for reducing greenhouse gas emissions through the supply chain redesign. Available online: https://upcommons.upc.edu/handle/2117/121042?locale-attribute=en (accessed on 28 May 2024).
Bonou A, Laurent A, Olsen SI. Life cycle assessment of onshore and offshore wind energy-from theory to application. Applied Energy. 2016; 180: 327-337. doi: 10.1016/j.apenergy.2016.07.058
International Energy Agency (IEA). CO2 Emissions in 2022. Available online: https://www.iea.org/reports/co2-emissions-in-2022 (accessed on 28 May 2024).
GWEC. Global Wind Report 2021. Available online: https://gwec.net/global-wind-report-2021/ (accessed on 28 May 2024).
IRENA. Untapped Potential for Climate Action. Available online: https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2017/Nov/IRENA_Untapped_potential_NDCs_2017.pdf (accessed on 28 May 2024).
IEA. CO2 Emissions in 2022. Available online: https://iea.blob.core.windows.net/assets/3c8fa115-35c4-4474-b237-1b00424c8844/CO2Emissionsin2022.pdf (accessed on 1 July 2024).
IEA. Net Zero by 2050. Available online: https://www.iea.org/reports/net-zero-by-2050 (accessed on 28 May 2024).
IEA. The Role of China’s ETS in Power Sector Decarbonisation. Available online: https://www.iea.org/reports/the-role-of-chinas-ets-in-power-sector-decarbonisation (accessed on 28 May 2024).
Zhang X, Guo X, Zhang X. Assessing and prospecting decoupling effect of carbon emissions from economic growth: Empirical studies from Chinese provinces. Energy & Environment. 2022; 34(6): 2044-2071. doi: 10.1177/0958305x221100534
Dutta A, Farooq S, Karimi IA, et al. Assessing the potential of CO 2 utilization with an integrated framework for producing power and chemicals. Journal of CO2 Utilization. 2017; 19: 49-57. doi: 10.1016/j.jcou.2017.03.005
Kılkış Ş, Krajačić G, Duić N, et al. Advances in integration of energy, water and environment systems towards climate neutrality for sustainable development. Energy Conversion and Management. 2020; 225: 113410. doi: 10.1016/j.enconman.2020.113410
Li Y, Yu L, Chen L, et al. Subtle Side Chain Triggers Unexpected Two-Channel Charge Transport Property Enabling 80% Fill Factors and Efficient Thick-Film Organic Photovoltaics. The Innovation. 2021; 2(1): 100090. doi: 10.1016/j.xinn.2021.100090
Yoo JJ, Seo G, Chua MR, et al. Efficient perovskite solar cells via improved carrier management. Nature. 2021; 590(7847): 587-593. doi: 10.1038/s41586-021-03285-w
Aydin E, Allen TG, De Bastiani M, et al. Interplay between temperature and bandgap energies on the outdoor performance of perovskite/silicon tandem solar cells. Nature Energy. 2020; 5(11): 851-859. doi: 10.1038/s41560-020-00687-4
Marchi M, Niccolucci V, Pulselli RM, et al. Environmental policies for GHG emissions reduction and energy transition in the medieval historic centre of Siena (Italy): The role of solar energy. Journal of Cleaner Production. 2018; 185: 829-840. doi: 10.1016/j.jclepro.2018.03.068
Zhou Z, Lin A, Wang L, et al. Estimation of the losses in potential concentrated solar thermal power electricity production due to air pollution in China. Science of The Total Environment. 2021; 784: 147214. doi: 10.1016/j.scitotenv.2021.147214
Di Leo S, Pietrapertosa F, Salvia M, et al. Contribution of the Basilicata region to decarbonisation of the energy system: results of a scenario analysis. Renewable and Sustainable Energy Reviews. 2021; 138: 110544. doi: 10.1016/j.rser.2020.110544
Koumi Ngoh S, Njomo D. An overview of hydrogen gas production from solar energy. Renewable and Sustainable Energy Reviews. 2012; 16(9): 6782-6792. doi: 10.1016/j.rser.2012.07.027
Ishaq H, Dincer I. Comparative assessment of renewable energy-based hydrogen production methods. Renewable and Sustainable Energy Reviews. 2021; 135: 110192. doi: 10.1016/j.rser.2020.110192
Shih CF, Zhang T, Li J, et al. Powering the Future with Liquid Sunshine. Joule. 2018; 2(10): 1925-1949. doi: 10.1016/j.joule.2018.08.016
Olabi AG, Wilberforce T, Elsaid K, et al. Selection Guidelines for Wind Energy Technologies. Energies. 2021; 14(11): 3244. doi: 10.3390/en14113244
Ren K, Tang X, Wang P, et al. Bridging energy and metal sustainability: Insights from China’s wind power development up to 2050. Energy. 2021; 227: 120524. doi: 10.1016/j.energy.2021.120524
Yuan Z, Yin Y, Xie C, et al. Advanced Materials for Zinc‐Based Flow Battery: Development and Challenge. Advanced Materials. 2019; 31(50). doi: 10.1002/adma.201902025
Bueno C, Carta JA. Wind powered pumped hydro storage systems, a means of increasing the penetration of renewable energy in the Canary Islands. Renewable and Sustainable Energy Reviews. 2006; 10(4): 312-340. doi: 10.1016/j.rser.2004.09.005
Deane JP, Ó Gallachóir BP, McKeogh EJ. Techno-economic review of existing and new pumped hydro energy storage plant. Renewable and Sustainable Energy Reviews. 2010; 14(4): 1293-1302. doi: 10.1016/j.rser.2009.11.015
Rehman S, Al-Hadhrami LM, Alam MM. Pumped hydro energy storage system: A technological review. Renewable and Sustainable Energy Reviews. 2015; 44: 586-598. doi: 10.1016/j.rser.2014.12.040
Budt M, Wolf D, Span R, et al. A review on compressed air energy storage: Basic principles, past milestones and recent developments. Applied Energy. 2016; 170: 250-268. doi: 10.1016/j.apenergy.2016.02.108
Lund H, Salgi G. The role of compressed air energy storage (CAES) in future sustainable energy systems. Energy Conversion and Management. 2009; 50(5): 1172-1179. doi: 10.1016/j.enconman.2009.01.032
Swider DJ. Compressed Air Energy Storage in an Electricity System With Significant Wind Power Generation. IEEE Transactions on Energy Conversion. 2007; 22(1): 95-102. doi: 10.1109/tec.2006.889547
Yang M, Hassan MA, Xu K, et al. Assessment of Water and Nitrogen Use Efficiencies Through UAV-Based Multispectral Phenotyping in Winter Wheat. Frontiers in Plant Science. 2020; 11. doi: 10.3389/fpls.2020.00927
Yang X, Adair KR, Gao X, et al. Recent advances and perspectives on thin electrolytes for high-energy-density solid-state lithium batteries. Energy & Environmental Science. 2021; 14(2): 643-671. doi: 10.1039/d0ee02714f
Feng R, Zhang X, Murugesan V, et al. Reversible ketone hydrogenation and dehydrogenation for aqueous organic redox flow batteries. Science. 2021; 372(6544): 836-840. doi: 10.1126/science.abd9795
Yuan Z, Zhang H, Li X. Ion conducting membranes for aqueous flow battery systems. Chemical Communications. 2018; 54(55): 7570-7588. doi: 10.1039/c8cc03058h
Zubrinich P. The long read: go big, go with the flow. Available online: https://www.pv-magazine-india.com/2020/02/15/the-long-read-go-big-go-with-the-flow/ (accessed on 28 May 2024).
Weaver JF. World’s largest battery: 200MW/800MWh vanadium flow battery,2017—site work ongoing. Available online: https://electrek.co/2017/12/21/worlds-largest-battery-200mw-800mwh-vanadium-flow-battery-rongke-power/ (accessed on 28 May 2024).
Berga L. The Role of Hydropower in Climate Change Mitigation and Adaptation: A Review. Engineering. 2016; 2(3): 313-318. doi: 10.1016/j.eng.2016.03.004
Luis J, Sidek LM, Desa MNM, et al. Sustainability of hydropower as source of renewable and clean energy. IOP Conference Series: Earth and Environmental Science. 2013; 16: 012050. doi: 10.1088/1755-1315/16/1/012050
Liu L, Parkinson S, Gidden M, et al. Quantifying the potential for reservoirs to secure future surface water yields in the world’s largest river basins. Environmental Research Letters. 2018; 13(4): 044026. doi: 10.1088/1748-9326/aab2b5
United Nations. Sustainable development knowledge platform. Available online: https://sustainabledevelopment.un.org (accessed on 3 July 2024).
Stocker TF, Qin D, Plattner GK, et al. Climate change 2013: the physical science basis. Working Group I contribution to the Fifth Assessment Report of the intergovernmental panel on climate change. Cambridge University Press; 2013.
World Energy Council. World energy resources: charting the upsurge in hydropower development 2015. World Energy Council; 2015.
International Renewable Energy Agency (IRENA). IRENA REMAP 2030: doubling the global share of renewable energy, a roadmap to 2030. Available online: https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2013/IRENA-REMAP-2030-working-paper.pdf?rev=d6b614ce1d34493cb74aa5052a1d6b2b (accessed on 28 May 2024).
World Bioenergy Association. Global Bioenergy Statistics 2020. Available online: http://www.worldbioenergy.org/uploads/201210%20WBA%20GBS%202020.pdf (accessed on 28 May 2024).
Tursi A. A review on biomass: importance, chemistry, classification, and conversion. Biofuel Research Journal. 2019; 6(2): 962-979. doi: 10.18331/brj2019.6.2.3
Alper K, Tekin K, Karagöz S, et al. Sustainable energy and fuels from biomass: a review focusing on hydrothermal biomass processing. Sustainable Energy & Fuels. 2020; 4(9): 4390-4414. doi: 10.1039/d0se00784f
Sivabalan K, Hassan S, Ya H, et al. A review on the characteristic of biomass and classification of bioenergy through direct combustion and gasification as an alternative power supply. Journal of Physics: Conference Series. 2021; 1831(1): 012033. doi: 10.1088/1742-6596/1831/1/012033
OES. International Vision for Ocean Energy Deployment. Available online: https://www.oceanenergy-systems.org/news/oes-vision-for-international-deployment-of-oceanenergy/ (accessed on 28 May 2024).
IRENA. Innovation Outlook: Ocean Energy Technologies. Available online: https://irena.org/publications/2020/Dec/Innovation-Outlook-Ocean-Energy-Technologies (accessed on 28 May 2024).
Wang ZL. Catch wave power in floating nets. Nature. 2017; 542(7640): 159-160. doi: 10.1038/542159a
Nihous GC. A Preliminary Assessment of Ocean Thermal Energy Conversion Resources. Journal of Energy Resources Technology. 2006; 129(1): 10-17. doi: 10.1115/1.2424965
Wu Y, Li P. The potential of coupled carbon storage and geothermal extraction in a CO2-enhanced geothermal system: a review. Geothermal Energy. 2020; 8(1). doi: 10.1186/s40517-020-00173-w
Ahmadi A, El Haj Assad M, Jamali DH, et al. Applications of geothermal organic Rankine Cycle for electricity production. Journal of Cleaner Production. 2020; 274: 122950. doi: 10.1016/j.jclepro.2020.122950
Lund JW, Toth AN. Direct utilization of geothermal energy 2020 worldwide review. Geothermics. 2021; 90: 101915. doi: 10.1016/j.geothermics.2020.101915
Goldbrunner J. Austria—country update. In: Proceedings of the World Geothermal Congress 2020; 25–29 April 2010; Bali, Indonesia. pp. 1–19.
Energy.gov. DOE Awards $ 46 Million for Geothermal Initiative Projects with Potential to Power Millions of U.S. Homes. Available online: https://www.energy.gov/articles/doe-awards-46-million-geothermal-initiative-projects-potential-power-millions-us-homes (accessed on 28 May 2024).
Richter A. Think GeoEnergy’s Top 10 Geothermal Countries 2022- Power Generation Capacity (MW). Available online: https://www.thinkgeoenergy.com/thinkgeoenergys-top-10-geothermal-countries-2022-power-generation-capacity-mw/ (accessed on 28 May 2024).
Noussan M, Raimondi PP, Scita R, et al. The Role of Green and Blue Hydrogen in the Energy Transition—A Technological and Geopolitical Perspective. Sustainability. 2020; 13(1): 298. doi: 10.3390/su13010298
Ajanovic A, Sayer M, Haas R. The economics and the environmental benignity of different colors of hydrogen. International Journal of Hydrogen Energy. 2022; 47(57): 24136-24154. doi: 10.1016/j.ijhydene.2022.02.094
Hermesmann M, Müller TE. Green, Turquoise, Blue, or Grey? Environmentally friendly Hydrogen Production in Transforming Energy Systems. Progress in Energy and Combustion Science. 2022; 90: 100996. doi: 10.1016/j.pecs.2022.100996
Navas-Anguita Z, García-Gusano D, Dufour J, et al. Revisiting the role of steam methane reforming with CO2 capture and storage for long-term hydrogen production. Science of The Total Environment. 2021; 771: 145432. doi: 10.1016/j.scitotenv.2021.145432
Nikolaidis P, Poullikkas A. A comparative overview of hydrogen production processes. Renewable and Sustainable Energy Reviews. 2017; 67: 597-611. doi: 10.1016/j.rser.2016.09.044
IRENA. Green hydrogen: A guide to policy Making. Available online: https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2020/Nov/IRENA_Green_hydrogen_policy_2020.pdf (accessed on 28 May 2024).
IEA. The Future of Hydrogen. Available online: https://www.hydrogenexpo.com/media/9370/the_future_of_hydrogen_iea.pdf (accessed on 28 May 2024).
Carmo M, Fritz DL, Mergel J, et al. A comprehensive review on PEM water electrolysis. International Journal of Hydrogen Energy. 2013; 38(12): 4901-4934. doi: 10.1016/j.ijhydene.2013.01.151
IEA. The future of hydrogen. Available online: https://www.iea.org/reports/the-future-of-hydrogen (accessed on 28 May 2024).
Hydrogen Council. How hydrogen empowers the energy transition. Available online: https://hydrogencouncil.com/en/study-how-hydrogen-empowers/ (accessed on 28 May 2024).
He Z, Qian Q, Ma J, et al. Water‐Enhanced Synthesis of Higher Alcohols from CO2 Hydrogenation over a Pt/Co3O4 Catalyst under Milder Conditions. Angewandte Chemie International Edition. 2015; 55(2): 737-741. doi: 10.1002/anie.201507585
He T, Cao H, Chen P. Complex Hydrides for Energy Storage, Conversion, and Utilization. Advanced Materials. 2019; 31(50). doi: 10.1002/adma.201902757
Zivar D, Kumar S, Foroozesh J. Underground hydrogen storage: A comprehensive review. International Journal of Hydrogen Energy. 2021; 46(45): 23436-23462. doi: 10.1016/j.ijhydene.2020.08.138
Messaoudani ZI, Rigas F, Hamid MDB, et al. Hazards, safety and knowledge gaps on hydrogen transmission via natural gas grid: A critical review. International Journal of Hydrogen Energy. 2016; 41(39): 17511-17525. doi: 10.1016/j.ijhydene.2016.07.171
Shao ZG, Yi BL. Developing trend and present status of hydrogen energy and fuel cell development. Bulletin of Chinese Academy of Sciences. 2019; 34(4): 469-477.
IEA. Global hydrogen review 2023. Available online: https://iea.blob.core.windows.net/assets/cb9d5903-0df2-4c6c-afa1-4012f9ed45d2/GlobalHydrogenReview2023.pdf (accessed on 28 May 2024).
Klevstrand A. Which ten countries will be the biggest producers of green hydrogen in 2030? Available online: https://www.hydrogeninsight.com/production/exclusive-which-ten-countries-will-be-the-biggest-producers-of-green-hydrogen-in-2030-/2-1-1405571 (accessed on 28 May 2024).
##submission.downloads##
已出版
文章引用
期
栏目
执照
版权声明
CC BY-NC 4.0