采用磷钨酸与多巴胺化学键合形成的水不溶性杂化物的高性能质子交换膜

作者

  • 路忠睿 新能源电力系统全国重点实验室,华北电力大学,北京102206,中国
  • 袁贤参 新能源电力系统全国重点实验室,华北电力大学,北京102206,中国
  • 贾骁阳 新能源电力系统全国重点实验室,华北电力大学,北京102206,中国
  • 林俊 新能源电力系统全国重点实验室,华北电力大学,北京102206,中国
  • 何少剑 新能源电力系统全国重点实验室,华北电力大学,北京102206,中国
Ariticle ID: 181
77 Views, 29 PDF Downloads

DOI:

https://doi.org/10.18686/cncest.v2i2.181

关键词:

燃料电池质子交换膜;磺化聚醚醚酮;磷钨酸;聚多巴胺;水热法

摘要

杂多酸可以将水保留在质子交换膜中,从而提高其在高温和低湿度条件下的质子电导率;然而,它们在水中的高溶解度会导致浸出,从而限制了它们的进一步应用。在此,我们利用磷钨酸(HPW)和聚多巴胺(PDA)颗粒,通过水热反应制备了不溶于水的PDA/HPW混合物(PDW)。PDW中PDA的氨基与HPW化学键合,成为HPW的锚。含有15wt% PDW的磺化聚醚醚酮(SPEEK)复合膜(SPEEK/PDW-15)在液态水中的质子电导率在25 ℃时为0.052 S cm–1。比SPEEK对照膜(0.032 S cm–1)高出63%。在浸入水中80天的测试中,SPEEK/PDW-15复合膜也显示出稳定的质子电导率。

参考

Yang W, Zhang E, Zhao J, et al. Dawn of clean energy: Enhanced heat transfer, radiative cooling, and firecracker-style controlled nuclear fusion power generation system. Clean Energy Science and Technology 2023; 1(1): 61. doi: 10.18686/cest.v1i1.61

Lu G, Wang Z, Bhatti UH, et al. Recent progress in carbon dioxide capture technologies: A review. Clean Energy Science and Technology 2023; 1(1): 32. doi: 10.18686/cest.v1i1.32

Zheng J, Chen X, Ma J. Advances in solid adsorbent materials for direct air capture of CO2. Clean Energy Science and Technology 2023; 1(2): 95. doi: 10.18686/cest.v1i2.95

Chen J, Zhang W, Yang W, et al. Separation of benzene and toluene associated with vapochromic behaviors by hybrid 4 arene-based co-crystals. Nature Communications 2024; 15(1): 1260. doi: 10.1038/s41467-024-45592-6

Yan M, Wang Y, Chen J, et al. Potential of nonporous adaptive crystals for hydrocarbon separation. Chemical Society Reviews 2023; 52(17): 6075-6119. doi: 10.1039/d2cs00856d

Zhang R, Zhou J. Ultrafast-adsorption-kinetics molecular sieving of propylene from propane. Clean Energy Science and Technology 2024; 2(2): 126. doi: 10.18686/cest.v2i2.126

Harun NAM, Shaari N, Nik Zaiman NFH. A review of alternative polymer electrolyte membrane for fuel cell application based on sulfonated poly(ether ether ketone). International Journal of Energy Research 2021; 45(14): 19671-19708. doi: 10.1002/er.7048

Nimir W, AlOthman A, Tawalbeh M, et al. Approaches towards the development of heteropolyacid-based high temperature membranes for PEM fuel cells. International Journal of Hydrogen Energy 2023; 48(17): 6638-6656. doi: 10.1016/j.ijhydene.2021.11.174

Geiling J, Steinberger M, Ortner F, et al. Combined dynamic operation of PEM fuel cell and continuous dehydrogenation of perhydro-dibenzyltoluene. International Journal of Hydrogen Energy 2021; 46(72): 35662-35677. doi: 10.1016/j.ijhydene.2021.08.034

Kim AR, Poudel MB, Chu JY, et al. Advanced performance and ultra-high, long-term durability of acid-base blended membranes over 900 hours containing sulfonated PEEK and quaternized poly(arylene ether sulfone) in H2/O2 fuel cells. Composites Part B-Engineering 2023; 254: 110558. doi: 10.1016/j.compositesb.2023.110558

Rauf M, Wang JW, Zhang P, et al. Non-precious nanostructured materials by electrospinning and their applications for oxygen reduction in polymer electrolyte membrane fuel cells. Journal of Power Sources 2018; 408: 17-27. doi: 10.1016/j.jpowsour.2018.10.074

Elwan HA, Mamlouk M, Scott K. A review of proton exchange membranes based on protic ionic liquid/polymer blends for polymer electrolyte membrane fuel cells. Journal of Power Sources 2021; 484: 229197. doi: 10.1016/j.jpowsour.2020.229197

Kim AR, Vinothkannan M, Song MH, et al. Amine functionalized carbon nanotube (ACNT) filled in sulfonated poly (ether ether ketone) membrane: Effects of ACNT in improving polymer electrolyte fuel cell performance under reduced relative humidity. Composites Part B-Engineering 2020; 188: 107890. doi: 10.1016/j.compositesb.2020.107890

He S, Ai Y, Dai W, et al. Composite membranes anchoring phosphotungstic acid by β-cyclodextrins modified halloysite nanotubes. Polymer Testing 2021; 100: 107246. doi: 10.1016/j.polymertesting.2021.107246

Liu X, Li Y, Xue J, et al. Magnetic field alignment of stable proton-conducting channels in an electrolyte membrane. Nature Communications 2019; 10(1): 842. doi: 10.1038/s41467-019-08622-2

Liu X, Zhang J, Zheng C, et al. Oriented proton-conductive nano-sponge-facilitated polymer electrolyte membranes. Energy & Environmental Science 2020; 13(1): 297-309. doi: 10.1039/c9ee03301g

He S, Liu S, Dai W, et al. Nanocomposite Proton Exchange Membranes Incorporating Phosphotungstic Acid Anchored on Imidazole-Functionalized Halloysite Nanotubes. Journal of the Electrochemical Society 2018; 165(11): F951-F958. doi: 10.1149/2.0601811jes

Xu D, Zhang G, Zhang N, et al. Surface modification of heteropoly acid/SPEEK membranes by polypyrrole with a sandwich structure for direct methanol fuel cells. Journal of Materials Chemistry 2010; 20(41): 9239-9245. doi: 10.1039/c0jm02167a

Lee H, Dellatore SM, Miller WM, et al. Mussel-inspired surface chemistry for multifunctional coatings. Science 2007; 318(5849): 426-430. doi: 10.1126/science.1147241

Alfieri ML, Weil T, Ng DYW, et al. Polydopamine at biological interfaces. Advances in Colloid and Interface Science 2022; 305102689. doi: 10.1016/j.cis.2022.102689

Liu T, Kim KC, Lee B, et al. Self-polymerized dopamine as an organic cathode for Li- and Na-ion batteries. Energy & Environmental Science 2017; 10(1): 205-215. doi: 10.1039/c6ee02641a

Zhang C, Ou Y, Lei WX, et al. CuSO4/H2O2-Induced Rapid Deposition of Polydopamine Coatings with High Uniformity and Enhanced Stability. Angewandte Chemie-International Edition 2016; 55(9): 3054-3057. doi: 10.1002/anie.201510724

Qi X, Huang Y, You S, et al. Engineering Robust Ag-Decorated Polydopamine Nano-Photothermal Platforms to Combat Bacterial Infection and Prompt Wound Healing. Advanced Science 2022; 9(11): 2106015. doi: 10.1002/advs.202106015

Wang Z, Zou Y, Li Y, et al. Metal-Containing Polydopamine Nanomaterials: Catalysis, Energy, and Theranostics. Small 2020; 16(18): 1907042. doi: 10.1002/smll.201907042

Liu Y, Ai K, Lu L. Polydopamine and Its Derivative Materials: Synthesis and Promising Applications in Energy, Environmental, and Biomedical Fields. Chemical Reviews 2014; 114(9): 5057-5115. doi: 10.1021/cr400407a

He S, Dai W, Zhai S, et al. Sulfonated poly(ether ether ketone) composite membranes based on amino-modified halloysite nanotubes that effectively immobilize phosphotungstic acid. Journal of Polymer Science 2020; 58(18): 2625-2633. doi: 10.1002/pol.20200035

Zhang Y, Wang H, Qian P, et al. Hybrid proton exchange membrane of sulfonated poly(ether ether ketone) containing polydopamine-coated carbon nanotubes loaded phosphotungstic acid for vanadium redox flow battery. Journal of Membrane Science 2021; 625: 119159. doi: 10.1016/j.memsci.2021.119159

Wei P, Huang D, Sui Y, et al. Polydopamine-coated polyimide nanofiber to anchor HPW and construct the pocket-like composite membrane with excellent proton conductivity and stability. International Journal of Hydrogen Energy 2023; 48(89): 34804-34815. doi: 10.1016/j.ijhydene.2023.05.284

Gong C, Liu H, Zhang B, et al. High level of solid superacid coated poly(vinylidene fluoride) electrospun nanofiber composite polymer electrolyte membranes. Journal of Membrane Science 2017; 535: 113-121. doi: 10.1016/j.memsci.2017.04.037

He S, Dai W, Yang W, et al. Nanocomposite proton exchange membranes based on phosphotungstic acid immobilized by polydopamine-coated halloysite nanotubes. Polymer Testing 2019; 73: 242-249. doi: 10.1016/j.polymertesting.2018.11.038

Zhai S, Lu Z, Ai Y, et al. High performance nanocomposite proton exchange membranes based on the nanohybrids formed by chemically bonding phosphotungstic acid with covalent organic frameworks. Journal of Power Sources 2023; 554: 232332. doi: 10.1016/j.jpowsour.2022.232332

Zhang Z, Ren J, Xu J, et al. Long-term durable solid state electrolyte membranes based on a metal-organic framework with phosphotungstic acid confined in the mesoporous cages. International Journal of Hydrogen Energy 2020; 45(51): 27527-27538. doi: 10.1016/j.ijhydene.2020.07.024

Feng M, Yu S, Wu P, et al. Rapid, high-efficient and selective removal of cationic dyes from wastewater using hollow polydopamine microcapsules: Isotherm, kinetics, thermodynamics and mechanism. Applied Surface Science 2021; 542: 148633. doi: 10.1016/j.apsusc.2020.148633

Elanthamilan E, Ganeshkumar A, Wang SF, et al. Fabrication of polydopamine/polyaniline decorated multiwalled carbon nanotube composite as multifunctional electrode material for supercapacitor applications. Synthetic Metals 2023; 298: 117423. doi: 10.1016/j.synthmet.2023.117423

Subudhi S, Mansingh S, Swain G, et al. HPW-Anchored UiO-66 Metal-Organic Framework: A Promising Photocatalyst Effective toward Tetracycline Hydrochloride Degradation and H2 Evolution via Z-Scheme Charge Dynamics. Inorganic Chemistry 2019; 58(8): 4921-4934. doi: 10.1021/acs.inorgchem.8b03544

Zhang Z, Ren J, Xu J, et al. Enhanced proton conductivity of sulfonated poly(arylene ether ketone sulfone) polymers by incorporating phosphotungstic acid-ionic-liquid-functionalized metal-organic framework. Journal of Membrane Science 2021; 630: 119304. doi: 10.1016/j.memsci.2021.119304

Ma Y, Li A, Wang C, et al. Preparation of HPW@UiO-66 catalyst with defects and its application in oxidative desulfurization. Chemical Engineering Journal 2021; 404: 127062. doi: 10.1016/j.cej.2020.127062

Zhang J, He X, Yu S, et al. A novel dental adhesive containing Ag/polydopamine-modified HA fillers with both antibacterial and mineralization properties. Journal of Dentistry 2021; 111: 103710. doi: 10.1016/j.jdent.2021.103710

Zeng R, Deng H, Xiao Y, et al. Cross-linked graphene/carbon nanotube networks with polydopamine "glue" for flexible supercapacitors. Composites Communications 2018; 10: 73-80. doi: 10.1016/j.coco.2018.07.002

Huang X, Liu X. Morphology control of highly efficient visible-light driven carbon-doped POM photocatalysts. Applied Surface Science 2020; 505: 144527. doi: 10.1016/j.apsusc.2019.144527

Zhai S, Song H, Jia X, et al. Fabrication of water-insoluble phosphotungstic acid-carbon nitride nanohybrids for promoting proton transport of nanocomposite proton exchange membranes. Journal of Power Sources 2021; 506: 230195. doi: 10.1016/j.jpowsour.2021.230195

Kim JS, Choi MC, Jeong KM, et al. Enhanced interaction in the polyimide/sepiolite hybrid films via acid activating and polydopamine coating of sepiolite. Polymers for Advanced Technologies 2018; 29(5): 1404-1413. doi: 10.1002/pat.4252

Zhang X, Ma H, Pei T, et al. Anchoring HPW by amino-modified MIL-101(Cr) to improve the properties of SPEEK in proton exchange membranes. Journal of Applied Polymer Science 2023; 140(25): 53978. doi: 10.1002/app.53978

Dong C, Shi Z, Zhou Q. Preparation and investigation of acid-base composite membranes with modified graphitic carbon nanosheets for direct methanol fuel cells. Journal of Applied Polymer Science 2020; 137(45): 49388. doi: 10.1002/app.49388

Wang X, Rong Y, Wang F, et al. High performance proton exchange membranes with double proton conduction pathways by introducing MOF impregnated with protic ionic liquid into SPEEK. Microporous and Mesoporous Materials 2022; 346: 112314. doi: 10.1016/j.micromeso.2022.112314

Tsen W. Attapulgite solvent-free nanofluids modified SPEEK proton exchange membranes for direct methanol fuel cells. Ionics 2020; 26(11): 5651-5660. doi: 10.1007/s11581-020-03680-9

Zhong F, Zeng Z, Liu Y, et al. Modification of sulfonated poly (etherether ketone) composite polymer electrolyte membranes with 2D molybdenum disulfide nanosheet-coated carbon nanotubes for direct methanol fuel cell application. Polymer 2022; 249: 124839. doi: 10.1016/j.polymer.2022.124839

Murmu R, Roy D, Patra SC, et al. Preparation and characterization of the SPEEK/PVA/Silica hybrid membrane for direct methanol fuel cell (DMFC). Polymer Bulletin 2022; 79(4): 2061-2087. doi: 10.1007/s00289-021-03602-3

Zhu B, Sui Y, Wei P, et al. NH2-UiO-66 coated fibers to balance the excellent proton conduction efficiency and significant dimensional stability of proton exchange membrane. Journal of Membrane Science 2021; 628: 119214. doi: 10.1016/j.memsci.2021.119214

Zhang Y, Wang H, Yu W, et al. Sulfonated poly(ether ether ketone)-based hybrid membranes containing polydopamine-decorated multiwalled carbon nanotubes with acid-base pairs for all vanadium redox flow battery. Journal of Membrane Science 2018; 564: 916-925. doi: 10.1016/j.memsci.2018.07.065

Zhai S, Jia X, Lu Z, et al. Highly ion selective composite proton exchange membranes for vanadium redox flow batteries by the incorporation of UiO-66-NH2 threaded with ion conducting polymers. Journal of Membrane Science 2022; 662: 121003. doi: 10.1016/j.memsci.2022.121003

Zhai S, Lu Z, Ai Y, et al. Highly selective proton exchange membranes for vanadium redox flow batteries enabled by the incorporation of water-insoluble phosphotungstic acid-metal organic framework nanohybrids. Journal of Membrane Science 2022; 645: 120214. doi: 10.1016/j.memsci.2021.120214

Bano S, Negi YS, Illathvalappil R, et al. Studies on nano composites of SPEEK/ethylene glycol/cellulose nanocrystals as promising proton exchange membranes. Electrochimica Acta 2019; 293: 260-272. doi: 10.1016/j.electacta.2018.10.029

Wu J, Wang F, Fan X, et al. Phosphoric acid-doped Gemini quaternary ammonium-grafted SPEEK membranes with superhigh proton conductivity and mechanical strength for direct methanol fuel cells. Journal of Membrane Science 2023; 672: 121431. doi: 10.1016/j.memsci.2023.121431

Zhang Z, Liu H, Dong T, et al. Phosphonate poly(vinylbenzyl chloride)-Modified Sulfonated poly(aryl ether nitrile) for Blend Proton Exchange Membranes: Enhanced Mechanical and Electrochemical Properties. Polymers 2023; 15(15): 3203. doi: 10.3390/polym15153203

Xiao Y, Shen X, Sun R, et al. Polybenzimidazole membrane crosslinked with quaternized polyaniline as high-temperature proton exchange membrane: Enhanced proton conductivity and stability. Journal of Membrane Science 2022; 660: 120795. doi: 10.1016/j.memsci.2022.120795

cover

##submission.downloads##

已出版

2024-05-07

文章引用

路忠睿, 袁贤参, 贾骁阳, 林俊, & 何少剑. (2024). 采用磷钨酸与多巴胺化学键合形成的水不溶性杂化物的高性能质子交换膜. 清洁能源科学与技术, 2(2), 181. https://doi.org/10.18686/cncest.v2i2.181

栏目

原创研究型文章