碳和二氧化硅包裹的无定形CuO混合材料的电化学还原CO到液态C2+的高法拉第效率

作者

  • 杨月霞 陕西省轻化工助剂重点实验室,化学与化工学院,陕西科技大学,西安710021,陕西省,中国
  • 何珍红 陕西省轻化工助剂重点实验室,化学与化工学院,陕西科技大学,西安710021,陕西省,中国
  • 曹会会 陕西省轻化工助剂重点实验室,化学与化工学院,陕西科技大学,西安710021,陕西省,中国
  • 孙永昌 陕西省轻化工助剂重点实验室,化学与化工学院,陕西科技大学,西安710021,陕西省,中国
  • 田玥 陕西省轻化工助剂重点实验室,化学与化工学院,陕西科技大学,西安710021,陕西省,中国
  • 刘佳洁 陕西省轻化工助剂重点实验室,化学与化工学院,陕西科技大学,西安710021,陕西省,中国
  • 王伟涛 陕西省轻化工助剂重点实验室,化学与化工学院,陕西科技大学,西安710021,陕西省,中国
  • 王欢 陕西省轻化工助剂重点实验室,化学与化工学院,陕西科技大学,西安710021,陕西省,中国
  • 杨阳 陕西省轻化工助剂重点实验室,化学与化工学院,陕西科技大学,西安710021,陕西省,中国
  • 刘昭铁 陕西省轻化工助剂重点实验室,化学与化工学院,陕西科技大学,西安710021,陕西省,中国;化学化工学院,陕西师范大学,西安710119,陕西省,中国
Ariticle ID: 178
46 Views, 24 PDF Downloads

DOI:

https://doi.org/10.18686/cncest.v2i2.178

关键词:

一氧化碳;电还原;C2+产物;铜基催化剂;二氧化硅

摘要

一氧化碳(CO)是公认的二氧化碳(CO2)电解还原为C2+产品的关键中间体之一,这也是近期的研究热点。开发一种能实现C-C偶联的高效催化剂对于生产C2+产物非常重要。在本研究中,我们提出了一种简易的方法,即通过静电组装耦合硅阳离子和铜盐,并结合水热法构建碳硅包铜非晶杂化材料,即CuO@C-SiO2-X(X表示催化剂制备温度),作为CO主要还原为液态C2+产物的高效电催化剂。CuO@C-SiO2-X催化剂表现出优异的电催化活性和选择性,尤其是对C2+液体产物的选择性,其法拉第效率(FE)最高达81.5%。此外,催化剂还具有良好的稳定性。碳的存在增强了电子传导性,SiO2可以阻止无定形的CuO聚集成晶体结构。本研究不仅为CO电催化还原为液态C2+化学品提供了一种高效催化剂,还为在CO还原过程中构建对C2+产物具有高选择性的铜基催化剂提供了一种方案。

参考

Nitopi S, Bertheussen E, Scott SB, et al. Progress and perspectives of electrochemical CO2 reduction on copper in aqueous electrolyte. Chemical Reviews. 2019; 119(12): 7610-7672. doi: 10.1021/acs.chemrev.8b00705

Zhu P, Wang H. High-purity and high-concentration liquid fuels through CO2 electroreduction. Nature Catalysis. 2021; 4(11): 943-951. doi: 10.1038/s41929-021-00694-y

Chen X, Chen J, Alghoraibi NM, et al. Electrochemical CO2-to-ethylene conversion on polyamine-incorporated Cu electrodes. Nature Catalysis. 2020; 4(1): 20-27. doi: 10.1038/s41929-020-00547-0

Li J, Ozden A, Wan M, et al. Silica-copper catalyst interfaces enable carbon-carbon coupling towards ethylene electrosynthesis. Nature Communications. 2021; 12(1): 2808. doi: 10.1038/s41467-021-23023-0

Rabinowitz JA, Kanan MW. The future of low-temperature carbon dioxide electrolysis depends on solving one basic problem. Nature Communications. 2020; 11(1): 5231. doi: 10.1038/s41467-020-19135-8

Niu ZZ, Chi LP, Liu R, et al. Rigorous assessment of CO2 electroreduction products in a flow cell. Energy & Environmental Science. 2021; 14(8): 4169-4176. doi: 10.1039/d1ee01664d

Li Y, Hu Y, Wu XF. Non-noble metal-catalysed carbonylative transformations. Chemical Society Reviews. 2018; 47(1): 172-194. doi: 10.1039/c7cs00529f

Guo S, Liu Y, Huang Y, et al. Promoting electrolysis of carbon monoxide toward acetate and 1-propanol in flow electrolyzer. ACS Energy Letters. 2023; 8(2): 935-942. doi: 10.1021/acsenergylett.2c02502

Wang L, Nitopi S, Wong AB, et al. Electrochemically converting carbon monoxide to liquid fuels by directing selectivity with electrode surface area. Nature Catalysis. 2019; 2(8): 702-708. doi: 10.1038/s41929-019-0301-z

Zhu P, Xia C, Liu CY, et al. Direct and continuous generation of pure acetic acid solutions via electrocatalytic carbon monoxide reduction. Proceedings of the National Academy of Sciences. 2020; 118(2): e2010868118. doi: 10.1073/pnas.2010868118

Chen C, Yan X, Liu S, et al. Highly efficient electroreduction of CO2 to C2+ alcohols on heterogeneous dual active sites. Angewandte Chemie International Edition. 2020; 59(38): 16459-16464. doi: 10.1002/anie.202006847

Jouny M, Luc W, Jiao F. General techno-economic analysis of CO2 electrolysis systems. Industrial & Engineering Chemistry Research. 2018; 57(6): 2165-2177. doi: 10.1021/acs.iecr.7b03514

Luc W, Fu X, Shi J, et al. Two-dimensional copper nanosheets for electrochemical reduction of carbon monoxide to acetate. Nature Catalysis. 2019; 2(5): 423-430. doi: 10.1038/s41929-019-0269-8

Li CW, Ciston J, Kanan MW. Electroreduction of carbon monoxide to liquid fuel on oxide-derived nanocrystalline copper. Nature. 2014; 508(7497): 504-507. doi: 10.1038/nature13249

Yang C, Ko BH, Hwang S, et al. Overcoming immiscibility toward bimetallic catalyst library. Science Advances. 2020; 6(17): eaaz6844. doi: 10.1126/sciadv.aaz6844

Ripatti DS, Veltman TR, Kanan MW. Carbon monoxide gas diffusion electrolysis that produces concentrated C2 products with high single-pass conversion. Joule. 2019; 3(10): 2581. doi: 10.1016/j.joule.2019.09.012

Jouny M, Luc W, Jiao F. High-rate electroreduction of carbon monoxide to multi-carbon products. Nature Catalysis. 2018; 1(10): 748-755. doi: 10.1038/s41929-018-0133-2

Li J, Chang K, Zhang H, et al. Effectively increased efficiency for electroreduction of carbon monoxide using supported polycrystalline copper powder electrocatalysts. ACS Catalysis. 2019; 9(6): 4709-4718. doi: 10.1021/acscatal.9b00099

Zhao C, Luo G, Liu X, et al. In situ topotactic transformation of an interstitial alloy for CO electroreduction. Advanced Materials. 2020; 32(39): 2002382. doi: 10.1002/adma.202002382

Wang L, Higgins DC, Ji Y, et al. Selective reduction of CO to acetaldehyde with CuAg electrocatalysts. Proceedings of the National Academy of Sciences. 2020; 117(23): 12572-12575. doi: 10.1073/pnas.1821683117

Peng HJ, Tang MT, Halldin Stenlid J, et al. Trends in oxygenate/hydrocarbon selectivity for electrochemical CO2 reduction to C2 products. Nature Communications. 2022; 13(1): 1399. doi: 10.1038/s41467-022-29140-8

Wang X, Wang Z, Zhuang TT, et al. Efficient upgrading of CO to C3 fuel using asymmetric C-C coupling active sites. Nature Communications. 2019; 10(1): 5186. doi: 10.1038/s41467-019-13190-6

Tan X, Sun K, Zhuang Z, et al. Stabilizing copper by a reconstruction-resistant atomic Cu–O–Si interface for electrochemical CO2 reduction. Journal of the American Chemical Society. 2023, 145(15): 8656-8664. doi: 10.1021/jacs.3c01638

Herzog A, Bergmann A, Jeon HS, et al. Operando investigation of Ag‐decorated Cu2O nanocube catalysts with enhanced CO2 electroreduction toward liquid products. Angewandte Chemie International Edition. 2021; 60(13): 7426-7435. doi: 10.1002/anie.202017070

Hoang TTH, Verma S, Ma S, et al. Nanoporous copper–silver alloys by additive-controlled electrodeposition for the selective electroreduction of CO2 to ethylene and ethanol. Journal of the American Chemical Society. 2018; 140(17): 5791-5797. doi: 10.1021/jacs.8b01868

Yang R, Zeng Z, Peng Z, et al. Amorphous urchin–like copper@nanosilica hybrid for efficient CO2 electroreduction to C2+ products. Journal of Energy Chemistry. 2021; 61: 290-296. doi: 10.1016/j.jechem.2020.12.032

Dubey RS, Rajesh YBRD, More MA. Synthesis and characterization of SiO2 nanoparticles via sol-gel method for industrial applications. Materials Today: Proceedings. 2015; 2(4-5): 3575-3579. doi: 10.1016/j.matpr.2015.07.098

Nallathambi G, Ramachandran T, Rajendran V, et al. Effect of silica nanoparticles and BTCA on physical properties of cotton fabrics. Materials Research. 2011; 14(4): 552-559. doi: 10.1590/s1516-14392011005000086

Yin H, Yu XX, Li QW, et al. Hollow porous CuO/C composite microcubes derived from metal-organic framework templates for highly reversible lithium-ion batteries. Journal of Alloys and Compounds. 2017; 706: 97-102. doi: 10.1016/j.jallcom.2017.02.215

Ge Y, Shah ZH, Wang C, et al. In situ encapsulation of ultrasmall CuO quantum dots with controlled band-gap and reversible thermochromism. ACS Applied Materials & Interfaces. 2015; 7(48): 26437-26444. doi: 10.1021/acsami.5b09578

Rahimabadi Z, Bagheri-Mohagheghi MM, Shirpay A. Synthesis, characterization, and the study of structural and optical properties of core/shell nanoparticles of SiO2@CuO for solar absorption collectors application. Journal of Materials Science: Materials in Electronics. 2022; 33(10): 7765-7780. doi: 10.1007/s10854-022-07928-0

Prakash J, Shekhar H, Yadav SR, et al. Synthesis and characterization of plant derived copper oxide nanoparticles and their application towards oxygen reduction reaction. ChemistrySelect. 2022; 7(1): e202103594. doi: 10.1002/slct.202103594

Ding J, Popa T, Tang J, et al. Highly selective and stable Cu/SiO2 catalysts prepared with a green method for hydrogenation of diethyl oxalate into ethylene glycol. Applied Catalysis B: Environmental. 2017; 209: 530-542. doi: 10.1016/j.apcatb.2017.02.072

Dar MA, Kim YS, Kim WB, et al. Structural and magnetic properties of CuO nanoneedles synthesized by hydrothermal method. Applied Surface Science. 2008; 254(22): 7477-7481. doi: 10.1016/j.apsusc.2008.06.004

Sahai A, Goswami N, Kaushik SD, et al. Cu/Cu2O/CuO nanoparticles: Novel synthesis by exploding wire technique and extensive characterization. Applied Surface Science. 2016; 390: 974-983. doi: 10.1016/j.apsusc.2016.09.005

Li H, Ban L, Wang Z, et al. Regulation of Cu species in CuO/SiO2 and its structural evolution in ethynylation reaction. Nanomaterials. 2019; 9(6): 842. doi: 10.3390/nano9060842

Wang W, Liu Z, Liu Y, et al. A simple wet-chemical synthesis and characterization of CuO nanorods. Applied Physics A: Materials Science & Processing. 2003; 76(3): 417-420. doi: 10.1007/s00339-002-1514-5

Raimondi F, Geissler K, Wambach J, Wokaun AF. Hydrogen production by methanol reforming: Post-reaction characterisation of a Cu/ZnO/Al2O3 catalyst by XPS and TPD. Applied Surface Science. 2002; 189(1-2): 59-71. doi: 10.1016/S0169-4332(01)01045-5

Yang J, Yuling L, Penghe Z, et al. Chemical thermodynamic and catalytic mechanism analysis of Cu-BTC-derived CuOx/C catalyst for selective catalytic reduction (SCR). Molecular Catalysis. 2022; 531: 112710. doi: 10.1016/j.mcat.2022.112710

He ZH, Li CC, Yang SY, et al. Electrocatalytic CO2 reduction to ethylene over CuOx boosting CO2 adsorption by lanthanide neodymium. Catalysis Science & Technology. 2023; 13(23): 6675-6684. doi: 10.1039/d3cy00893b

Ji Y, Guan A, Zheng G. Copper-based catalysts for electrochemical carbon monoxide reduction. Cell Reports Physical Science. 2022; 3(10): 101072. doi: 10.1016/j.xcrp.2022.101072

Mu G, Mu D, Wu B, et al. Microsphere-like SiO2/MXene hybrid material enabling high performance anode for lithium ion batteries. Small. 2019; 16(3): 1905430. doi: 10.1002/smll.201905430

Feng X, Jiang K, Fan S, et al. A direct grain-boundary-activity correlation for CO electroreduction on Cu nanoparticles. ACS Central Science. 2016; 2(3): 169-174. doi: 10.1021/acscentsci.6b00022

Bertheussen E, Hogg TV, Abghoui Y, et al. Electroreduction of CO on polycrystalline copper at low overpotentials. ACS Energy Letters. 2018; 3(3): 634-640. doi: 10.1021/acsenergylett.8b00092

Chen R, Su H, Liu D, et al. Highly selective production of ethylene by the electroreduction of carbon monoxide. Angewandte Chemie International Edition. 2019; 132(1): 160-166. doi: 10.1002/ange.201910662

Coelho FMB, Botelho AM, Ivo OF, et al. Volumetric mass transfer coefficient for carbon monoxide in a dual impeller stirred tank reactor considering a perfluorocarbon–water mixture as liquid phase. Chemical Engineering Research and Design. 2019; 143: 160-169. doi: 10.1016/j.cherd.2019.01.013

Grosse P, Yoon A, Rettenmaier C, et al. Dynamic transformation of cubic copper catalysts during CO2 electroreduction and its impact on catalytic selectivity. Nature Communications. 2021; 12(1): 6736. doi: 10.1038/s41467-021-26743-5

Yang PP, Zhang XL, Liu P, et al. Highly enhanced chloride adsorption mediates efficient neutral CO2 electroreduction over a dual-phase copper catalyst. Journal of the American Chemical Society. 2023; 145(15), 8714-8725. doi: 10.1021/jacs.3c02130

Guo PP, He ZH, Yang SY, et al. Electrocatalytic CO2 reduction to ethylene over ZrO2/Cu-Cu2O catalysts in aqueous electrolytes. Green Chemistry. 2022; 24(4): 1527-1533. doi: 10.1039/d1gc04284j

cover

##submission.downloads##

已出版

2024-04-26

文章引用

杨月霞, 何珍红, 曹会会, 孙永昌, 田玥, 刘佳洁, 王伟涛, 王欢, 杨阳, & 刘昭铁. (2024). 碳和二氧化硅包裹的无定形CuO混合材料的电化学还原CO到液态C2+的高法拉第效率. 清洁能源科学与技术, 2(2), 178. https://doi.org/10.18686/cncest.v2i2.178

栏目

原创研究型文章