冷等离子体催化剂合成与改性研究综述

作者

  • 田庆彬 山东省高性能碳材料制备及应用工程实验室,机电工程学院,青岛科技大学,青岛市266061,山东省,中国
  • 毕岚森 山东省高性能碳材料制备及应用工程实验室,机电工程学院,青岛科技大学,青岛市266061,山东省,中国
  • 林淑燕 山东省高性能碳材料制备及应用工程实验室,机电工程学院,青岛科技大学,青岛市266061,山东省,中国
  • 高江姗 山东省高性能碳材料制备及应用工程实验室,机电工程学院,青岛科技大学,青岛市266061,山东省,中国
  • 何燕 山东省高性能碳材料制备及应用工程实验室,机电工程学院,青岛科技大学,青岛市266061,山东省,中国
Article ID: 153
46 Views, 24 PDF Downloads

DOI:

https://doi.org/10.18686/cncest.v2i1.153

关键词:

冷等离子体;催化剂合成;表面改性;等离子体分散

摘要

冷等离子体在能源储存和转换领域得到了广泛的研究和开发,主要集中在其辅助催化剂合成、表面改性、引入杂原子、产生缺陷和空位、改善催化剂分散性以及减小颗粒尺寸等方面。与传统的煅烧和化学方法相比,冷等离子体的能量可以在处理过程中直接传递到催化剂和载体,从而通过改变催化剂的内部结构和表面形态来改善负载催化剂和载体之间的相互作用。因此,这些特性使得冷等离子体在催化剂合成和改性方面相当绿色、安全和高效。本文分析了各种冷等离子体技术的特点和应用,以及冷等离子体技术与热力学原理对催化剂的协同处理。根据目前的研究进展,本文对利用冷等离子体合成和改性催化剂进行了总结和展望。

参考

Adamovich I, Baalrud SD, Bogaerts A, et al. The 2017 Plasma Roadmap: Low temperature plasma science and technology. Journal of Physics D: Applied Physics. 2017; 50(32): 323001. doi: 10.1088/1361-6463/aa76f5

Lee CGN, Kanarik KJ, Gottscho RA. The grand challenges of plasma etching: a manufacturing perspective. Journal of Physics D: Applied Physics. 2014; 47(27): 273001. doi: 10.1088/0022-3727/47/27/273001

Bogaerts A, Neyts E, Gijbels R, 2002. Gas Discharge Plasmas and their Applications. Spectrochimica Acta Part B. 57: 609-658. doi: 10.1016/S0584-8547(01)00406-2

Zhang B, Shang X, Jiang Z, et al. Atmospheric-Pressure Plasma Jet-Induced Ultrafast Construction of an Ultrathin Nonstoichiometric Nickel Oxide Layer with Mixed Ni3+/Ni2+ Ions and Rich Oxygen Defects as an Efficient Electrocatalyst for Oxygen Evolution Reaction. ACS Applied Energy Materials. 2021; 4(5): 5059-5069. doi: 10.1021/acsaem.1c00623

Witvrouwen T, Paulussen S, Sels B. The Use of Non‐Equilibrium Plasmas for the Synthesis of Heterogeneous Catalysts. Plasma Processes and Polymers. 2012; 9(8): 750-760. doi: 10.1002/ppap.201200004

Snoeckx R, Bogaerts A. Plasma technology – a novel solution for CO2 conversion? Chemical Society Reviews. 2017; 46(19): 5805-5863. doi: 10.1039/c6cs00066e

Whitehead JC. Plasma-catalysis: Is it just a question of scale? Frontiers of Chemical Science and Engineering. 2019; 13(2): 264-273. doi: 10.1007/s11705-019-1794-3

Neyts EC. PECVD growth of carbon nanotubes: From experiment to simulation. Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena. 2012; 30(3). doi: 10.1116/1.3702806

Kato T, Hatakeyama R. Direct Growth of Doping-Density-Controlled Hexagonal Graphene on SiO2 Substrate by Rapid-Heating Plasma CVD. ACS Nano. 2012; 6(10): 8508-8515. doi: 10.1021/nn302290z

Piferi C, Riccardi C. A study on propane depletion by surface dielectric barrier discharges. Cleaner Engineering and Technology. 2022; 8: 100486. doi: 10.1016/j.clet.2022.100486

Kato R, Tsugawa K, Okigawa Y, et al. Bilayer graphene synthesis by plasma treatment of copper foils without using a carbon-containing gas. Carbon. 2014; 77: 823-828. doi: 10.1016/j.carbon.2014.05.087

Purushothaman V, Jeganathan K. Investigations on the role of Ni-catalyst for the VLS growth of quasi-aligned GaN nanowires by chemical vapor deposition. Journal of Nanoparticle Research. 2013; 15(7). doi: 10.1007/s11051-013-1789-9

Schmidt M, Kettlitz M, Kolb JF. How activated carbon improves the performance of non-thermal plasma removing methyl ethyl ketone from a gas stream. Cleaner Engineering and Technology. 2021; 4: 100234. doi: 10.1016/j.clet.2021.100234

Tang WC, Hong FCN. Growths of indium gallium nitride nanowires by plasma-assisted chemical vapor deposition. Thin Solid Films. 2014; 570: 315-320. doi: 10.1016/j.tsf.2014.04.053

Harling AM, Demidyuk V, Fischer SJ, et al. Plasma-catalysis destruction of aromatics for environmental clean-up: Effect of temperature and configuration. Applied Catalysis B: Environmental. 2008; 82(3-4): 180-189. doi: 10.1016/j.apcatb.2008.01.017

Sarker DR, Uddin MN, Elias M, et al. P-doped TiO2-MWCNTs nanocomposite thin films with enhanced photocatalytic activity under visible light exposure. Cleaner Engineering and Technology. 2022; 6: 100364. doi: 10.1016/j.clet.2021.100364

Rao P, Wu D, Qin YY, et al. Facile fabrication of single-atom catalysts by a plasma-etching strategy for oxygen reduction reaction. Journal of Materials Chemistry A. 2022; 10(12): 6531-6537. doi: 10.1039/d1ta09154a

Soares LG, Oliveira Vaz M de, Teixeira SR, et al. Absorbance determination and photocatalytic production of hydrogen using tungsten and TiO2 oxide nanostructures As catalyst. Cleaner Engineering and Technology. 2021; 5: 100268. doi: 10.1016/j.clet.2021.100268

Rao P, Wu D, Luo J, et al. A plasma bombing strategy to synthesize high-loading single-atom catalysts for oxygen reduction reaction. Cell Reports Physical Science. 2022; 3(5): 100880. doi: 10.1016/j.xcrp.2022.100880

Sitab AA, Tujjohra F, Rashid TU, et al. Thermally crosslinked electrospun nanofibrous mat from chrome-tanned solid wastes for cationic dye adsorption in wastewater treatment. Cleaner Engineering and Technology. 2023; 13: 100621. doi: 10.1016/j.clet.2023.100621

Yao S, Ma Y, Xu T, et al. Ti–C bonds reinforced TiO2@C nanocomposite Na-ion battery electrodes by fluidized-bed plasma-enhanced chemical vapor deposition. Carbon. 2021; 171: 524-531. doi: 10.1016/j.carbon.2020.09.023

Ho YM, Zheng WT, Li YA, et al. Field Emission Properties of Hybrid Carbon Nanotube−ZnO Nanoparticles. The Journal of Physical Chemistry C. 2008; 112(45): 17702-17708. doi: 10.1021/jp804566k

Demidyuk V, Whitehead JC. Influence of Temperature on Gas-Phase Toluene Decomposition in Plasma-Catalytic System. Plasma Chemistry and Plasma Processing. 2006; 27(1): 85-94. doi: 10.1007/s11090-006-9045-z

Rao P, Wu D, Wang TJ, et al. Single atomic cobalt electrocatalyst for efficient oxygen reduction reaction. eScience. 2022; 2(4): 399-404. doi: 10.1016/j.esci.2022.05.004

Liang WJ, Ma L, Liu H, et al. Toluene degradation by non-thermal plasma combined with a ferroelectric catalyst. Chemosphere. 2013; 92(10): 1390-1395. doi: 10.1016/j.chemosphere.2013.05.042

Luo Z, Lim S, You Y, et al. Effect of ion bombardment on the synthesis of vertically aligned single-walled carbon nanotubes by plasma-enhanced chemical vapor deposition. Nanotechnology. 2008; 19(25): 255607. doi: 10.1088/0957-4484/19/25/255607

Yamazaki Y, Sakuma N, Katagiri M, et al. High-Quality Carbon Nanotube Growth at Low Temperature by Pulse-Excited Remote Plasma Chemical Vapor Deposition. Applied Physics Express. 2008; 1: 034004. doi: 10.1143/apex.1.034004

Wang BB, Zheng K, Shao RW, et al. Structure and electrical property of gallium nitride nanowires synthesized in plasma-enhanced hot filament chemical vapor deposition system. Journal of Physics and Chemistry of Solids. 2013; 74(6): 862-866. doi: 10.1016/j.jpcs.2013.01.034

Sahoo G, Polaki SR, Ghosh S, et al. Plasma-tuneable oxygen functionalization of vertical graphenes enhance electrochemical capacitor performance. Energy Storage Materials. 2018; 14: 297-305. doi: 10.1016/j.ensm.2018.05.011

Hussain S, Amade R, Jover E, et al. Growth and Plasma Functionalization of Carbon Nanotubes. Journal of Cluster Science. 2015; 26(2): 315-336. doi: 10.1007/s10876-015-0862-1

Mehta P, Barboun P, Go DB, et al. Catalysis Enabled by Plasma Activation of Strong Chemical Bonds: A Review. ACS Energy Letters. 2019; 4(5): 1115-1133. doi: 10.1021/acsenergylett.9b00263

Wang W, Snoeckx R, Zhang X, et al. Modeling Plasma-based CO2 and CH4 Conversion in Mixtures with N2, O2, and H2O: The Bigger Plasma Chemistry Picture. The Journal of Physical Chemistry C. 2018; 122(16): 8704-8723. doi: 10.1021/acs.jpcc.7b10619

Wang Q, Cheng Y, Jin Y. Dry reforming of methane in an atmospheric pressure plasma fluidized bed with Ni/γ-Al2O3 catalyst. Catalysis Today. 2009; 148(3-4): 275-282. doi: 10.1016/j.cattod.2009.08.008

Wang Q, Yan BH, Jin Y, et al. Dry Reforming of Methane in a Dielectric Barrier Discharge Reactor with Ni/Al2O3Catalyst: Interaction of Catalyst and Plasma. Energy & Fuels. 2009; 23(8): 4196-4201. doi: 10.1021/ef900286j

Sentek J, Krawczyk K, Młotek M, et al. Plasma-catalytic methane conversion with carbon dioxide in dielectric barrier discharges. Applied Catalysis B: Environmental. 2010; 94(1-2): 19-26. doi: 10.1016/j.apcatb.2009.10.016

Rico VJ, Hueso JL, Cotrino J, et al. Hybrid catalytic-DBD plasma reactor for the production of hydrogen and preferential CO oxidation (CO-PROX) at reduced temperatures. Chemical Communications. 2009; (41): 6192. doi: 10.1039/b909488a

Nozaki T, Muto N, Kado S, et al. Dissociation of vibrationally excited methane on Ni catalyst. Catalysis Today. 2004; 89(1-2): 57-65. doi: 10.1016/j.cattod.2003.11.040

Di L, Xu Z, Wang K, et al. A facile method for preparing Pt/TiO2 photocatalyst with enhanced activity using dielectric barrier discharge. Catalysis Today. 2013; 211: 109-113. doi: 10.1016/j.cattod.2013.03.025

Xu W, Zhang X, Dong M, et al. Plasma-assisted Ru/Zr-MOF catalyst for hydrogenation of CO2 to methane. Plasma Science and Technology. 2019; 21(4): 044004. doi: 10.1088/2058-6272/aaf9d2

Li Y, Wei Z, Wang Y. Ni/MgO catalyst prepared via dielectric-barrier discharge plasma with improved catalytic performance for carbon dioxide reforming of methane. Frontiers of Chemical Science and Engineering. 2014; 8(2): 133-140. doi: 10.1007/s11705-014-1422-1

Gallon HJ, Tu X, Twigg MV, et al. Plasma-assisted methane reduction of a NiO catalyst—Low temperature activation of methane and formation of carbon nanofibres. Applied Catalysis B: Environmental. 2011; 106(3-4): 616-620. doi: 10.1016/j.apcatb.2011.06.023

Tu X, Gallon HJ, Whitehead JC. Plasma-assisted reduction of a NiO/Al2O3 catalyst in atmospheric pressure H2/Ar dielectric barrier discharge. Catalysis Today. 2013; 211: 120-125. doi: 10.1016/j.cattod.2013.03.024

Tu X, Gallon HJ, Whitehead JC. Electrical and spectroscopic diagnostics of a single-stage plasma-catalysis system: effect of packing with TiO2. Journal of Physics D: Applied Physics. 2011; 44(48): 482003. doi: 10.1088/0022-3727/44/48/482003

Xu W, Zhan Z, Di L, et al. Enhanced activity for CO oxidation over Pd/Al2O3 catalysts prepared by atmospheric-pressure cold plasma. Catalysis Today. 2015; 256: 148-152. doi: 10.1016/j.cattod.2015.01.017

Di L, Zhan Z, Zhang X, et al. Atmospheric-Pressure DBD Cold Plasma for Preparation of High Active Au/P25 Catalysts for Low-Temperature CO Oxidation. Plasma Science and Technology. 2016; 18(5): 544-548. doi: 10.1088/1009-0630/18/5/17

Mizushima T, Matsumoto K, Sugoh J, et al. Tubular membrane-like catalyst for reactor with dielectric-barrier-discharge plasma and its performance in ammonia synthesis. Applied Catalysis A: General. 2004; 265(1): 53-59. doi: 10.1016/j.apcata.2004.01.002

Mizushima T, Matsumoto K, Ohkita H, et al. Catalytic Effects of Metal-loaded Membrane-like Alumina Tubes on Ammonia Synthesis in Atmospheric Pressure Plasma by Dielectric Barrier Discharge. Plasma Chemistry and Plasma Processing. 2006; 27(1): 1-11. doi: 10.1007/s11090-006-9034-2

Yu S, Liang Y, Sun S, et al. Vehicle Exhaust Gas Clearance by Low Temperature Plasma-Driven Nano-Titanium Dioxide Film Prepared by Radiofrequency Magnetron Sputtering. Marr AC, ed. PLoS ONE. 2013; 8(4): e59974. doi: 10.1371/journal.pone.0059974

Hou WC, Chen LY, Hong FCN. Fabrication of gallium nitride nanowires by nitrogen plasma. Diamond and Related Materials. 2008; 17(7-10): 1780-1784. doi: 10.1016/j.diamond.2008.02.003

Mei D, Zhu X, He YL, et al. Plasma-assisted conversion of CO2 in a dielectric barrier discharge reactor: understanding the effect of packing materials. Plasma Sources Science and Technology. 2014; 24(1): 015011. doi: 10.1088/0963-0252/24/1/015011

Yu Q, Kong M, Liu T, et al. Characteristics of the Decomposition of CO2 in a Dielectric Packed-Bed Plasma Reactor. Plasma Chemistry and Plasma Processing. 2011; 32(1): 153-163. doi: 10.1007/s11090-011-9335-y

Scapinello M, Martini LM, Tosi P. CO2 Hydrogenation by CH4in a Dielectric Barrier Discharge: Catalytic Effects of Nickel and Copper. Plasma Processes and Polymers. 2014; 11(7): 624-628. doi: 10.1002/ppap.201400023

Krawczyk K, Młotek M, Ulejczyk B, et al. Methane conversion with carbon dioxide in plasma-catalytic system. Fuel. 2014; 117: 608-617. doi: 10.1016/j.fuel.2013.08.068

Spencer LF, Gallimore AD. CO2 dissociation in an atmospheric pressure plasma/catalyst system: a study of efficiency. Plasma Sources Science and Technology. 2012; 22(1): 015019. doi: 10.1088/0963-0252/22/1/015019

Pietruszka B, Heintze M. Methane conversion at low temperature: the combined application of catalysis and non-equilibrium plasma. Catalysis Today. 2004; 90(1-2): 151-158. doi: 10.1016/j.cattod.2004.04.021

Tu X, Gallon HJ, Twigg MV, et al. Dry reforming of methane over a Ni/Al2O3 catalyst in a coaxial dielectric barrier discharge reactor. Journal of Physics D: Applied Physics. 2011; 44(27): 274007. doi: 10.1088/0022-3727/44/27/274007

Chen L, Zhang XW, Huang L, et al. Partial oxidation of methane with air for methanol production in a post-plasma catalytic system. Chemical Engineering and Processing: Process Intensification. 2009; 48(8): 1333-1340. doi: 10.1016/j.cep.2009.06.007

Li Z. Plasma treatment of Ni catalyst via a corona discharge. Journal of Molecular Catalysis A: Chemical. 2004; 211(1-2): 149-153. doi: 10.1016/j.molcata.2003.10.003

Dong P, Yang F, Cheng X, et al. Plasmon enhanced photocatalytic and antimicrobial activities of Ag-TiO2 nanocomposites under visible light irradiation prepared by DBD cold plasma treatment. Materials Science and Engineering: C. 2019; 96: 197-204. doi: 10.1016/j.msec.2018.11.005

Tu X, Whitehead JC. Plasma-catalytic dry reforming of methane in an atmospheric dielectric barrier discharge: Understanding the synergistic effect at low temperature. Applied Catalysis B: Environmental. 2012; 125: 439-448. doi: 10.1016/j.apcatb.2012.06.006

Chen P, Tao L, Xie Y. Non-thermal plasma cooperating catalyst degradation of the volatile organic compounds: A review. Chemical Industry and Engineering Progress. 2019; 38(9): 4284-4294. doi: 10.16085/j.issn.1000-6613.2018-2485

Shang S, Liu G, Chai X, et al. Research on Ni/γ-Al2O3 catalyst for CO2 reforming of CH4 prepared by atmospheric pressure glow discharge plasma jet. Catalysis Today. 2009; 148(3-4): 268-274. doi: 10.1016/j.cattod.2009.09.011

Weltmann K ‐D., Kindel E, Brandenburg R, et al. Atmospheric Pressure Plasma Jet for Medical Therapy: Plasma Parameters and Risk Estimation. Contributions to Plasma Physics. 2009; 49(9): 631-640. doi: 10.1002/ctpp.200910067

Reuter S, von Woedtke T, Weltmann KD. The kINPen—a review on physics and chemistry of the atmospheric pressure plasma jet and its applications. Journal of Physics D: Applied Physics. 2018; 51(23): 233001. doi: 10.1088/1361-6463/aab3ad

Sajjadi SM, Haghighi M. Influence of tungsten loading on CO2/O2 reforming of methane over Co-W-promoted NiO-Al2 O3 nanocatalyst designed by sol-gel-plasma. International Journal of Energy Research. 2018; 43(2): 853-873. doi: 10.1002/er.4316

Shimizu K, Kaneta S, Blajan M, et al. Surface modification of dye-sensitized solid-state solar cells by atmospheric-pressure plasma jet. Japanese Journal of Applied Physics. 2014; 53(11S): 11RF02. doi: 10.7567/jjap.53.11rf02

Chang S, Rodríguez Tolava EF, Yang Y, et al. One‐Step Fast Synthesis of Li4Ti5O12 Particles Using an Atmospheric Pressure Plasma Jet. Dunn B, ed. Journal of the American Ceramic Society. 2013; 97(3): 708-712. doi: 10.1111/jace.12728

Kang M, Kim B J, Cho S M, 2002. Decomposition of Toluene Using an Atmospheric Pressure Plasma/TiO2 Catalytic System. Journal of Molecular Catalysis A: Chemical. 180: 125-132. doi: 10.1016/S1381-1169(01)00417-4

Rahemi N, Haghighi M, Babaluo AA, et al. Synthesis and physicochemical characterizations of Ni/Al2O3–ZrO2 nanocatalyst prepared via impregnation method and treated with non-thermal plasma for CO2 reforming of CH4. Journal of Industrial and Engineering Chemistry. 2013; 19(5): 1566-1576. doi: 10.1016/j.jiec.2013.01.024

Hofmann S, Ducati C, Neill RJ, et al. Gold catalyzed growth of silicon nanowires by plasma enhanced chemical vapor deposition. Journal of Applied Physics. 2003; 94(9): 6005-6012. doi: 10.1063/1.1614432

Li Z. Plasma treatment of Ni catalyst via a corona discharge. Journal of Molecular Catalysis A: Chemical. 2004; 211(1-2): 149-153. doi: 10.1016/j.molcata.2003.10.003

Jiang N, Shang KF, Lu N, et al. High-Efficiency Removal of NOx From Flue Gas by Multitooth Wheel-Cylinder Corona Discharge Plasma Facilitated Selective Catalytic Reduction Process. IEEE Transactions on Plasma Science. 2016; 44(11): 2738-2744. doi: 10.1109/tps.2016.2609140

Lu N, Wang C, Lou C. Remediation of PAH-contaminated soil by pulsed corona discharge plasma. Journal of Soils and Sediments. 2016; 17(1): 97-105. doi: 10.1007/s11368-016-1473-7

Zhang M, Sun Y, Jiang H, et al. Degradation of dimethyl phthalate in aqueous by corona discharge plasma combined with a Bi2WO6 nano-catalyst. Acta Scientiae Circumstantiae. 2016; 36(5): 1690-1696.

Zhao B, Liu Y, Zhu Z, et al. Highly selective conversion of CO2 into ethanol on Cu/ZnO/Al2O3 catalyst with the assistance of plasma. Journal of CO2 Utilization. 2018; 24: 34-39. doi: 10.1016/j.jcou.2017.10.013

Zhang X, Zhu A, Li X, et al. Oxidative dehydrogenation of ethane with CO2 over catalyst under pulse corona plasma. Catalysis Today. 2004; 89(1-2): 97-102. doi: 10.1016/j.cattod.2003.11.015

Saud S, Nguyen DB, Kim SG, et al. Improvement of Ethylene Removal Performance by Adsorption/Oxidation in a Pin-Type Corona Discharge Coupled with Pd/ZSM-5 Catalyst. Catalysts. 2020; 10(1): 133. doi: 10.3390/catal10010133

Chao Y. Hydrogen production via partial oxidation of methane with plasma-assisted catalysis. International Journal of Hydrogen Energy. 2008; 33(2): 664-671. doi: 10.1016/j.ijhydene.2007.09.024

Yu X, Shen X, Li J, et al. Catalytic degradation of butyl acetate by low-temperature plasma coupling (Chinese). Environmental Protection and Circular Economy. 2020; 8(4):11-14. doi: 10.3969/j.issn.1674-1021.2020.08.004

Aziznia A, Bozorgzadeh H R, Seyed-Matin N, 2012. Comparison of Dry Reforming of Methane in Low Temperature Hybrid Plasma-Catalytic Corona with Thermal Catalytic Reactor over Ni/gamma-Al2O3. Journal of Natural Gas Chemistry. 21(4): 466-475. doi: 10.1016/S1003-9953(11)60392-7

Chavadej S, Kiatubolpaiboon W, Rangsunvigit P, et al. A combined multistage corona discharge and catalytic system for gaseous benzene removal. Journal of Molecular Catalysis A: Chemical. 2007; 263(1-2): 128-136. doi: 10.1016/j.molcata.2006.08.061

Marafee A, Liu C, Xu G, et al. An Experimental Study on the Oxidative Coupling of Methane in a Direct Current Corona Discharge Reactor over Sr/La2O3 Catalyst. Industrial & Engineering Chemistry Research. 1997; 36(3): 632-637. doi: 10.1021/ie960139b

Reuter S, von Woedtke T, Weltmann KD. The kINPen—a review on physics and chemistry of the atmospheric pressure plasma jet and its applications. Journal of Physics D: Applied Physics. 2018; 51(23): 233001. doi: 10.1088/1361-6463/aab3ad

Sergiienko R, Shibata E, Zentaro A, et al. Formation and characterization of graphite-encapsulated cobalt nanoparticles synthesized by electric discharge in an ultrasonic cavitation field of liquid ethanol. Acta Materialia. 2007; 55(11): 3671-3680. doi: 10.1016/j.actamat.2007.02.017

Show Y, Hirai A, Almowarai A, et al. Platinum catalyst formed on carbon nanotube by the in-liquid plasma method for fuel cell. Thin Solid Films. 2015; 596: 198-200. doi: 10.1016/j.tsf.2015.08.053

Bulychev NA, Kazaryan MA, Chaikov LL, et al. Nanoscale metal oxide particles produced in the plasma discharge in the liquid phase upon exposure to ultrasonic cavitation. 1. Method for producing particles. Bulletin of the Lebedev Physics Institute. 2014; 41(9): 264-268. doi: 10.3103/s106833561409005x

Hattori Y, Nomura S, Mukasa S, et al. Synthesis of tungsten oxide, silver, and gold nanoparticles by radio frequency plasma in water. Journal of Alloys and Compounds. 2013; 578: 148-152. doi: 10.1016/j.jallcom.2013.05.032

Xue H, Yang T, Zhang Z, et al. Stimulate the hidden catalysis potential and exposure of nickel site in NiSe@CNTs result in ultra-high HER/OER activity and stability. Applied Catalysis B: Environmental. 2023; 330: 122641. doi: 10.1016/j.apcatb.2023.122641

Wang J, Yang T, Li X, et al. Hydrogen evolution reaction activity enhancement from active site turnover mechanism. Journal of Energy Chemistry. 2024; 92: 629-638. doi: 10.1016/j.jechem.2024.02.006

##submission.downloads##

已出版

2024-03-29

文章引用

田庆彬, 毕岚森, 林淑燕, 高江姗, & 何燕. (2024). 冷等离子体催化剂合成与改性研究综述. 清洁能源科学与技术, 2(1), 153. https://doi.org/10.18686/cncest.v2i1.153

栏目

综述文章