基于水分管理和蒸发冷却的吸湿性聚合物材料研究

作者

  • 高琰 材料科学与工程学院,北京科技大学,北京市100083,中国
  • 李洋 新材料研究院,北京师范大学,北京市100875,中国
  • 陈晓 新材料研究院,北京师范大学,北京市100875,中国
Article ID: 143
37 Views, 15 PDF Downloads

DOI:

https://doi.org/10.18686/cncest.v2i1.143

摘要

吸附式水管理和蒸发冷却个人热管理(personal thermal management,PTM)技术在实现自适应温度调节、广泛适用性和低能耗方面具有巨大潜力。然而,设计兼具高效散热和穿着舒适性的高性能耐用吸湿复合材料是一项挑战。最近,Xu等利用两种吸湿聚合物和交联策略,开发出具有出色吸湿性、耐用性、延展性、透气性、耐洗性和抗菌性的吸湿织物。这项工作为全聚合物吸湿复合材料实现高效节能的吸湿和蒸发冷却的PTM应用前景铺平了道路。

参考

Lu G, Wang Z, Bhatti UH, et al. Recent progress in carbon dioxide capture technologies: A review. Clean Energy Science and Technology. 2023; 1(1): 32. doi: 10.18686/cest.v1i1.32

Zheng J, Chen X, Ma J. Advances in solid adsorbent materials for direct air capture of CO2. Clean Energy Science and Technology. 2023; 1(2): 95. doi: 10.18686/cest.v1i2.95

Yan M, Wang Y, Chen J, et al. Potential of nonporous adaptive crystals for hydrocarbon separation. Chemical Society Reviews. 2023; 52(17): 6075-6119. doi: 10.1039/d2cs00856d

Yan M, Wang Y, Zhou J. Separation of toluene and alcohol azeotropes by nonporous adaptive crystals of pillar[n]arenes with analytical purity of 100%. Cell Reports Physical Science. 2023; 4(10): 101637. doi: 10.1016/j.xcrp.2023.101637

Dong L, Zhai F, Wang H, et al. An azobenzene-based photothermal energy storage system for co-harvesting photon energy and low-grade ambient heat via a photoinduced crystal-to-liquid transition. Energy Materials. 2022; 2(4): 200025. doi: 10.20517/energymater.2022.26

Wang L, Ma Z, Zhang Y, et al. Mechanically strong and folding‐endurance Ti3C2Tx MXene/PBO nanofiber films for efficient electromagnetic interference shielding and thermal management. Carbon Energy. 2022; 4(2): 200-210. doi: 10.1002/cey2.174

Yang W, Zhang E, Zhao J, et al. Dawn of clean energy: enhanced heat transfer, radiative cooling, and firecracker-style controlled nuclear fusion power generation system. Clean Energy Science and Technology. 2023; 1(1): 61. doi: 10.18686/cest.v1i1.61

Woods J, James N, Kozubal E, et al. Humidity’s impact on greenhouse gas emissions from air conditioning. Joule. 2022; 6(4): 726-741. doi: 10.1016/j.joule.2022.02.013

Deroubaix A, Labuhn I, Camredon M, et al. Large uncertainties in trends of energy demand for heating and cooling under climate change. Nature Communications. 2021; 12(1): 5197. doi: 10.1038/s41467-021-25504-8

Bai L, Zhang Y, Guo S, et al. Hygrothermic wood actuated robotic hand. Advanced Materials. 2023; 35(22): 2211437. doi: 10.1002/adma.202211437

Xu D, Chen Z, Liu Y, et al. Hump‐inspired hierarchical fabric for personal thermal protection and thermal comfort management. Advanced Functional Materials. 2023; 33(10): 2212626. doi: 10.1002/adfm.202212626

Fan C, Zhang Y, Long Z, et al. Dynamically tunable subambient daytime radiative cooling metafabric with janus wettability. Advanced Functional Materials. 2023; 33(29): 2300794. doi: 10.1002/adfm.202300794

Cai L, Peng Y, Xu J, et al. Temperature regulation in colored infrared-transparent polyethylene textiles. Joule. 2019; 3(6): 1478-1486. doi: 10.1016/j.joule.2019.03.015

Guo Y, Bae J, Fang Z, et al. Hydrogels and hydrogel-derived materials for energy and water sustainability. Chemical Reviews. 2020; 120(15): 7642-7707. doi: 10.1021/acs.chemrev.0c00345

Li S, Shao K, Wu X, et al. Self‐contained moisture management and evaporative cooling through 1D to 3D hygroscopic all-polymer composites. Advanced Functional Materials. 2023; 34(9): 2310020. doi: 10.1002/adfm.202310020

##submission.downloads##

已出版

2024-02-28

文章引用

高琰, 李洋, & 陈晓. (2024). 基于水分管理和蒸发冷却的吸湿性聚合物材料研究. 清洁能源科学与技术, 2(1), 143. https://doi.org/10.18686/cncest.v2i1.143

栏目

评论