用于微藻利用的烟气CO2供应方法:综述

作者

  • 俞小苏 能源学院,苏州大学
  • 郭王彪 微生物科学研究院,耶鲁大学; 清洁能源利用国家重点实验室,浙江大学
  • 胡毡 环境科学与工程学院,天津大学
  • 李鹏程 环境科学与工程学院,天津大学
  • 张卓蔚 文理学院,华盛顿大学
  • 程军 清洁能源利用国家重点实验室,浙江大学
  • 宋春风 环境科学与工程学院,天津大学
  • 叶庆 能源学院,苏州大学
Article ID: 119
80 Views

DOI:

https://doi.org/10.18686/cncest.v1i2.119

关键词:

烟气;微藻;生物精炼厂;光生物反应器;工艺流程

摘要

利用烟气作为微藻培养碳源的潜力前景广阔。将烟气作为碳源纳入微藻培养过程中可以加速微藻的生长速度,从而提高集成过程的整体经济可行性。有两个主要烟气来源需要考虑:燃煤发电厂的烟气,其CO2浓度为12–15 w/w%,以及煤化工过程的烟气,其CO2浓度为90–99 w/w%。此外,开放式或密封式微藻培养系统的选择也会影响经济效益。因此,有四种不同的微藻培养路线需要评估:原位开放系统、离位开放系统、原位密封系统和离位密封系统。将烟气作为微藻培养中的碳源,显示出在减少环境影响和成本方面的巨大潜力,使其成为经济高效的微藻培养的一种非常有前途且可持续的方法。在本综述中,建议在烟气CO2浓度较高、目标产品为低利润商品的情况下采用原地开放式路线,而在烟气CO2浓度较低、目标产品为高附加值产品的情况下采用非原地密封式路线。

参考

1. Lu G, Wang Z, Bhatti UH, et al. Recent progress in carbon dioxide capture technologies: A review. Clean Energy Science and Technology 2023; 1(1). doi: 10.18686/cest.v1i1.32

2. Zhang S, Liu Z. Advances in the biological fixation of carbon dioxide by microalgae. Journal of Chemical Technology & Biotechnology 2021; 96(6): 1475–1495. doi: 10.1002/jctb.6714

3. Magalhães IB, Ferreira J, de SiqueiraCastro J, et al. Agro-industrial wastewater-grown microalgae: A techno-environmental assessment of open and closed systems. Science of The Total Environment 2022; 834: 155282. doi: 10.1016/j.scitotenv.2022.155282

4. Clarens AF, Resurreccion EP, White MA, et al. Environmental life cycle comparison of algae to other bioenergy feedstocks. Environmental Science & Technology 2010; 44(5): 1813–1819. doi: 10.1021/es902838n

5. Ruiz J, Olivieri G, de Vree J, et al. Towards industrial products from microalgae. Energy & Environmental Science 2016; 9(10): 3036–3043. doi: 10.1039/c6ee01493c

6. De Assis TC, Calijuri ML, Assemany PP, et al. Using atmospheric emissions as CO2 source in the cultivation of microalgae: Productivity and economic viability. Journal of Cleaner Production 2019; 215: 1160–1169. doi: 10.1016/j.jclepro.2019.01.093

7. Zhu Y, Cheng J, Zhang Z, et al. Mutation of Arthrospira platensis by gamma irradiation to promote phenol tolerance and CO2 fixation for coal-chemical flue gas reduction. Journal of CO2 Utilization 2020; 38: 252–261. doi: 10.1016/j.jcou.2020.02.003

8. Zhao Q, Jin G, Liu Q, et al. Tolerance comparison among selected spirulina strains cultured under high carbon dioxide and coal power plant flue gas supplements. Journal of Ocean University of China 2021; 20(6): 1567–1577. doi: 10.1007/s11802-021-4783-3

9. Mondal M, Ghosh A, Gayen K, et al. Carbon dioxide bio-fixation by Chlorella sp. BTA 9031 towards biomass and lipid production: Optimization using central composite design approach. Journal of CO2 Utilization 2017; 22: 317–329. doi: 10.1016/j.jcou.2017.10.008

10. Sung YJ, Lee JS, Yoon HK, et al. Outdoor cultivation of microalgae in a coal-fired power plant for conversion of flue gas CO2 into microalgal direct combustion fuels. Systems Microbiology and Biomanufacturing 2020; 1(1): 90–99. doi: 10.1007/s43393-020-00007-7

11. Sarat Chandra T, Deepak RS, Maneesh Kumar M, et al. Evaluation of indigenous fresh water microalga Scenedesmus obtusus for feed and fuel applications: Effect of carbon dioxide, light and nutrient sources on growth and biochemical characteristics. Bioresource Technology 2016; 207: 430–439. doi: 10.1016/j.biortech.2016.01.044

12. Kim GY, Heo J, Kim HS, et al. Bicarbonate-based cultivation of Dunaliella salina for enhancing carbon utilization efficiency. Bioresource Technology 2017; 237: 72–77. doi: 10.1016/j.biortech.2017.04.009

13. Zhu C, Chen S, Ji Y, et al. Progress toward a bicarbonate-based microalgae production system. Trends in Biotechnology 2022; 40(2): 180–193. doi: 10.1016/j.tibtech.2021.06.005

14. Zhu C, Zhang R, Cheng L, et al. A recycling culture of Neochloris oleoabundans in a bicarbonate-based integrated carbon capture and algae production system with harvesting by auto-flocculation. Biotechnology for Biofuels 2018; 11(1). doi: 10.1186/s13068-018-1197-6

15. Acién Fernández FG, Fernández Sevilla JM, Molina Grima E. Costs analysis of microalgae production. In: Pandey A, Chang JS, Soccol CR, et al (editors). Biofuels from Algae, 2nd ed. Elsevier; 2019. pp. 551–566. doi: 10.1016/b978-0-444-64192-2.00021-4

16. Shekh A, Sharma A, Schenk PM, et al. Microalgae cultivation: Photobioreactors, CO2 utilization, and value‐added products of industrial importance. Journal of Chemical Technology & Biotechnology 2021; 97(5): 1064–1085. doi: 10.1002/jctb.6902

17. Fernández FGA, Reis A, Wijffels RH, et al. The role of microalgae in the bioeconomy. New Biotechnology 2021; 61: 99–107. doi: 10.1016/j.nbt.2020.11.011

18. Morales-Amaral MDM, Gómez-Serrano C, Acién FG, et al. Outdoor production of Scenedesmus sp. in thin-layer and raceway reactors using centrate from anaerobic digestion as the sole nutrient source. Algal Research 2015; 12: 99–108. doi: 10.1016/j.algal.2015.08.020

19. Venancio HC, Cella H, Lopes RG, et al. Surface-to-volume ratio influence on the growth of Scenedesmus obliquus in a thin-layer cascade system. Journal of Applied Phycology 2020; 32(2): 821–829. doi: 10.1007/s10811-020-02036-0

20. Villaró S, Sánchez-Zurano A, Ciardi M, et al. Production of microalgae using pilot-scale thin-layer cascade photobioreactors: Effect of water type on biomass composition. Biomass and Bioenergy 2022; 163: 106534. doi: 10.1016/j.biombioe.2022.106534

21. Zhu B, Shen H, Li Y, et al. Large-scale cultivation of spirulina for biological CO2 mitigation in open raceway ponds using purified CO2 from a coal chemical flue gas. Frontiers in Bioengineering and Biotechnology 2020; 7. doi: 10.3389/fbioe.2019.00441

22. Day JG, Gong Y, Hu Q. Microzooplanktonic grazers—A potentially devastating threat to the commercial success of microalgal mass culture. Algal Research 2017; 27: 356–365. doi: 10.1016/j.algal.2017.08.024

23. Rasheed R, Thaher M, Younes N, et al. Solar cultivation of microalgae in a desert environment for the development of techno-functional feed ingredients for aquaculture in Qatar. Science of The Total Environment 2022; 835: 155538. doi: 10.1016/j.scitotenv.2022.155538

24. Mohan N, Rao PH, Boopathy AB, et al. A sustainable process train for a marine microalga-mediated biomass production and CO2 capture: A pilot-scale cultivation of Nannochloropsis salina in open raceway ponds and harvesting through electropreciflocculation. Renewable Energy 2021; 173: 263–272. doi: 10.1016/j.renene.2021.03.147

25. Vadlamani A, Pendyala B, Viamajala S, et al. High productivity cultivation of microalgae without concentrated CO2 input. ACS Sustainable Chemistry & Engineering 2018; 7(2): 1933–1943. doi: 10.1021/acssuschemeng.8b04094

26. Giostri A, Binotti M, Macchi E. Microalgae cofiring in coal power plants: Innovative system layout and energy analysis. Renewable Energy 2016; 95: 449–464. doi: 10.1016/j.renene.2016.04.033

27. Magalhães IB, Ferreira J, de Siqueira Castro J, et al. Technologies for improving microalgae biomass production coupled to effluent treatment: A life cycle approach. Algal Research 2021; 57: 102346. doi: 10.1016/j.algal.2021.102346

28. Acedo M, Gonzalez Cena JR, Kiehlbaugh KM, et al. Coupling carbon capture from a power plant with semi-automated open raceway ponds for microalgae cultivation. Journal of Visualized Experiments 2020; 162. doi: 10.3791/61498-v

29. Zhang RL, Wang JH, Cheng LY, et al. Selection of microalgae strains for bicarbonate-based integrated carbon capture and algal production system to produce lipid. International Journal of Green Energy 2019; 16(11): 825–833. doi: 10.1080/15435075.2019.1641103

30. Sampathkumar SJ, Gothandam KM. Sodium bicarbonate augmentation enhances lutein biosynthesis in green microalgae Chlorella pyrenoidosa. Biocatalysis and Agricultural Biotechnology 2019; 22: 101406. doi: 10.1016/j.bcab.2019.101406

31. Xia B, Chen B, Sun X, et al. Interaction of TiO2 nanoparticles with the marine microalga Nitzschia closterium : Growth inhibition, oxidative stress and internalization. Science of The Total Environment 2015; 508: 525–533. doi: 10.1016/j.scitotenv.2014.11.066

32. Zhu C, Zhai X, Jia J, et al. Seawater desalination concentrate for cultivation of Dunaliella salina with floating photobioreactor to produce β-carotene. Algal Research 2018; 35: 319–324. doi: 10.1016/j.algal.2018.08.035

33. Costa JAV, Freitas BCB, Rosa GM, et al. Operational and economic aspects of Spirulina-based biorefinery. Bioresource Technology 2019; 292: 121946. doi: 10.1016/j.biortech.2019.121946

34. Borovkov AB, Gudvilovich IN, Avsiyan AL, et al. Light supply and mineral nutrition conditions as optimization factors for outdoor mass culture of carotenogenic microalga Dunaliella salina. Aquaculture Research 2021; 52(12): 6098–6106. doi: 10.1111/are.15471

35. Bartley ML, Boeing WJ, Dungan BN, et al. pH effects on growth and lipid accumulation of the biofuel microalgae Nannochloropsis salina and invading organisms. Journal of Applied Phycology 2013; 26(3): 1431–1437. doi: 10.1007/s10811-013-0177-2

36. Xu H, Lee U, Coleman AM, et al. Balancing water sustainability and productivity objectives in microalgae cultivation: Siting open ponds by considering seasonal water-stress impact using AWARE-US. Environmental Science & Technology 2020; 54(4): 2091–2102. doi: 10.1021/acs.est.9b05347

37. Venteris ER, Skaggs RL, Coleman AM, et al. A GIS cost model to assess the availability of freshwater, seawater, and saline groundwater for algal biofuel production in the United States. Environmental Science & Technology 2013; 47(9): 4840–4849. doi: 10.1021/es304135b

38. Yang J, Xu M, Zhang X, et al. Life-cycle analysis on biodiesel production from microalgae: Water footprint and nutrients balance. Bioresource Technology 2011; 102(1): 159–165. doi: 10.1016/j.biortech.2010.07.017

39. Villaró S, Morillas-España A, Acién G, et al. Optimisation of operational conditions during the production of arthrospira platensis using pilot-scale raceway reactors, protein extraction, and assessment of their techno-functional properties. Foods 2022; 11(15): 2341. doi: 10.3390/foods11152341

40. Polle JEW, Jin E, Ben-Amotz A. The alga Dunaliella revisited: Looking back and moving forward with model and production organisms. Algal Research 2020; 49: 101948. doi: 10.1016/j.algal.2020.101948

41. Fabris M, Abbriano RM, Pernice M, et al. Emerging technologies in algal biotechnology: Toward the establishment of a sustainable, algae-based bioeconomy. Frontiers in Plant Science 2020; 11. doi: 10.3389/fpls.2020.00279

42. Guo W, Cheng J, Ali KA, et al. Conversion of NaHCO3 to Na2CO3 with a growth of Arthrospira platensis cells in 660 m2 raceway ponds with a CO2 bicarbonation absorber. Microbial Biotechnology 2019; 13(2): 470–478. doi: 10.1111/1751-7915.13497

43. Eustance E, Badvipour S, Wray JT, et al. Biomass productivity of two Scenedesmus strains cultivated semi-continuously in outdoor raceway ponds and flat-panel photobioreactors. Journal of Applied Phycology 2015; 28(3): 1471–1483. doi: 10.1007/s10811-015-0710-6

44. Rajkumar R, Takriff MS, Veeramuthu A. Technical insights into carbon dioxide sequestration by microalgae: A biorefinery approach towards sustainable environment. Biomass Conversion and Biorefinery 2022. doi: 10.1007/s13399-022-02446-9

45. Chauton MS, Reitan KI, Norsker NH, et al. A techno-economic analysis of industrial production of marine microalgae as a source of EPA and DHA-rich raw material for aquafeed: Research challenges and possibilities. Aquaculture 2015; 436: 95–103. doi: 10.1016/j.aquaculture.2014.10.038

46. Vázquez-Romero B, Perales JA, Pereira H, et al. Techno-economic assessment of microalgae production, harvesting and drying for food, feed, cosmetics, and agriculture. Science of The Total Environment 2022; 837: 155742. doi: 10.1016/j.scitotenv.2022.155742

47. Schipper K, Al-Jabri HMSJ, Wijffels RH, et al. Techno-economics of algae production in the Arabian Peninsula. Bioresource Technology 2021; 331: 125043. doi: 10.1016/j.biortech.2021.125043

48. Norsker NH, Barbosa MJ, Vermuë MH, et al. Microalgal production—A close look at the economics. Biotechnology Advances 2011; 29(1): 24–27. doi: 10.1016/j.biotechadv.2010.08.005

49. Suzuki H, Hulatt CJ, Wijffels RH, et al. Correction to: Growth and LC-PUFA production of the cold-adapted microalga Koliella antarctica in photobioreactors. Journal of Applied Phycology 2018; 31(2): 999. doi: 10.1007/s10811-018-1646-4

50. Choi YY, Joun JM, Lee J, et al. Development of large-scale and economic pH control system for outdoor cultivation of microalgae Haematococcus pluvialis using industrial flue gas. Bioresource Technology 2017; 244: 1235–1244. doi: 10.1016/j.biortech.2017.05.147

51. Tredici MR, Rodolfi L, Biondi N, et al. Techno-economic analysis of microalgal biomass production in a 1-ha Green Wall Panel (GWP®) plant. Algal Research 2016; 19: 253–263. doi: 10.1016/j.algal.2016.09.005

52. Oostlander PC, van Houcke J, Wijffels RH, et al. Microalgae production cost in aquaculture hatcheries. Aquaculture 2020; 525: 735310. doi: 10.1016/j.aquaculture.2020.735310

53. López AR, Rodríguez SB, Vallejo RA, et al. Sustainable cultivation of Nannochloropsis gaditana microalgae in outdoor raceways using flue gases for a complete 2-year cycle: A circular economy challenge. Journal of Applied Phycology 2019; 31(3): 1515–1523. doi: 10.1007/s10811-018-1710-0

54. Ye Q, Cheng J, Liu S, et al. Improving light distribution and light/dark cycle of 900 L tangential spiral-flow column photobioreactors to promote CO2 fixation with Arthrospira sp. cells. Science of The Total Environment 2020; 720: 137611. doi: 10.1016/j.scitotenv.2020.137611

55. Choi SY, Sim SJ, Ko SC, et al. Scalable cultivation of engineered cyanobacteria for squalene production from industrial flue gas in a closed photobioreactor. Journal of Agricultural and Food Chemistry 2020; 68(37): 10050–10055. doi: 10.1021/acs.jafc.0c03133

56. Zhu C, Zhai X, Xi Y, et al. Progress on the development of floating photobioreactor for microalgae cultivation and its application potential. World Journal of Microbiology and Biotechnology 2019; 35(12). doi: 10.1007/s11274-019-2767-x

57. Zhu C, Xi Y, Zhai X, et al. Pilot outdoor cultivation of an extreme alkalihalophilic Trebouxiophyte in a floating photobioreactor using bicarbonate as carbon source. Journal of Cleaner Production 2021; 283: 124648. doi: 10.1016/j.jclepro.2020.124648

58. Huang JJ, Bunjamin G, Teo ES, et al. An enclosed rotating floating photobioreactor (RFP) powered by flowing water for mass cultivation of photosynthetic microalgae. Biotechnology for Biofuels 2016; 9(1). doi: 10.1186/s13068-016-0633-8

59. Cheng J, Yang Z, Huang Y, et al. Improving growth rate of microalgae in a 1191 m2 raceway pond to fix CO2 from flue gas in a coal-fired power plant. Bioresource Technology 2015; 190: 235–241. doi: 10.1016/j.biortech.2015.04.085

60. Mitra R, Das Gupta A, Kumar RR, et al. A cleaner and smarter way to achieve high microalgal biomass density coupled with facilitated self-flocculation by utilizing bicarbonate as a source of dissolved carbon dioxide. Journal of Cleaner Production 2023; 391: 136217. doi: 10.1016/j.jclepro.2023.136217

61. Eustance E, Lai YJS, Shesh T, et al. Improved CO2 utilization efficiency using membrane carbonation in outdoor raceways. Algal Research 2020; 51: 102070. doi: 10.1016/j.algal.2020.102070

62. Ding Y, Li X, Wang Z, et al. Ammonium bicarbonate supplementation as carbon source in alkaliphilic Spirulina mass culture. Aquaculture Research 2017; 48(9): 4886–4896. doi: 10.1111/are.13308

63. Soletto D, Binaghi L, Ferrari L, et al. Effects of carbon dioxide feeding rate and light intensity on the fed-batch pulse-feeding cultivation of Spirulina platensis in helical photobioreactor. Biochemical Engineering Journal 2008; 39(2): 369–375. doi: 10.1016/j.bej.2007.10.007

64. Huntley ME, Johnson ZI, Brown SL, et al. Demonstrated large-scale production of marine microalgae for fuels and feed. Algal Research 2015; 10: 249–265. doi: 10.1016/j.algal.2015.04.016

燃煤电厂烟气用于密封PBR微藻培养的原位密封路线。

##submission.downloads##

已出版

2023-12-25

文章引用

俞小苏, 郭王彪, 胡毡, 李鹏程, 张卓蔚, 程军, 宋春风, & 叶庆. (2023). 用于微藻利用的烟气CO2供应方法:综述. 清洁能源科学与技术, 1(2), 119. https://doi.org/10.18686/cncest.v1i2.119

栏目

综述文章