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Abstract: With the maturity of hydrogen storage technologies, hydrogen-electricity coupling 

energy storage in green electricity and green hydrogen modes is an ideal energy system. The 

construction of hydrogen-electricity coupling energy storage systems (HECESSs) is one of the 

important technological pathways for energy supply and deep decarbonization. In a HECESS, 

hydrogen storage can maintain the energy balance between supply and demand and increase 

the utilization efficiency of energy. However, its scenario models in power system 

establishment and the corresponding solution methods still need to be studied in depth. For 

accelerating the construction of HECESSs, firstly, this paper describes the current applications 

of hydrogen storage technologies from three aspects: hydrogen production, hydrogen power 

generation, and hydrogen storage. Secondly, based on the complementary synergistic 

mechanism of hydrogen energy and electric energy, the structure of the HECESS and its 

operation mode are described. To study the engineering applications of HECESSs more deeply, 

the recent progress of HECESS application at the source, grid, and load sides is reviewed. For 

the application of the models of hydrogen storage at the source/grid/load side, the selection of 

the solution method will affect the optimal solution of the model and solution efficiency. As 

solving complex multi-energy coupling models using traditional optimization methods is 

difficult, the paper therefore explored the advantages of deep reinforcement learning (DRL) 

algorithms and their applications in HECESSs. Finally, the technical application in the 

construction of new power systems supported by HECESSs is prospected. The study aims to 

provide a reference for the research on hydrogen storage in power systems. 

Keywords: hydrogen storage; power systems; deep reinforcement learning; application 

scenarios 

1. Introduction

To actively respond to global climate change, countries have been engaged in a

low-carbon transformation of their energy mix. Substantial changes are needed in the 

global energy system to achieve sustainable development goals [1], with a focus on 

green and clean energy sources, such as hydrogen, solar, wind, and nuclear. With the 

introduction of the dual-carbon strategy, the long-term abundance of electricity 

brought about by the increased penetration of renewable energy and the withdrawal of 

traditional fossil energy units need to be urgently addressed. Traditional power 

systems are mainly based on centralized power generation, relying on large thermal 

power plants, nuclear power plants, and other power generation facilities to supply 

large-scale power. New power systems, on the other hand, focus more on distributed 

power generation, such as solar photovoltaic, wind power, and small hydroelectric 

power plants. The power supply side of new power systems is gradually transformed 

into a high-uncertainty energy supply system dominated by new energy sources [2]. 
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Compared with traditional power systems, new power systems undergo profound 

changes in primary energy characteristics, load structure characteristics, and grid-

balance mode [3]. New power systems face the following challenges: 

1) In extreme climates, the minimum output of new energy is at a low level. There 

may be several consecutive days of small output, and hence power is difficult to 

balance and the capacity for power supply security support is insufficient. 

2) The seasonal mismatch between new energy generation and electricity 

consumption leads to difficulties in seasonal balance. 

The abandonment of wind and light can be widespread, and there is a high 

proportion of new energy consumption problems. Therefore, energy storage, as a 

flexible regulating device, can provide power support during the peak period of 

electricity consumption load. When the electricity consumption load is low, energy 

storage can consume excess renewable energy. It is designed to help balance the 

difference between energy supply and demand and improve energy utilization 

efficiency. Rational allocation in power systems is expected to solve system balance 

problems caused by the randomness, volatility, and seasonality of renewable energy 

generation. Therefore, new power systems are also gradually transformed from the 

three elements of source, grid, and load into the four elements of source, grid, load, 

and storage. There are abundant types of energy storage resources, among which is 

hydrogen energy, which is a green, clean, and low-carbon energy source with high 

energy density, easy storage, and transportation [4]. The most important feature of 

hydrogen energy is its ability to be stored for long periods, at high capacity, and across 

seasons, which is not available in other ways. The integration and control of a power 

storage system and a hydrogen storage system required for effective interaction with 

the grid further strengthen the need for hydrogen-electricity coupling. 

A hydrogen-electricity coupling energy storage system (HECESS) is a new low-

carbon and sustainable energy system that uses electric energy and hydrogen energy 

as energy carriers to aim at a high percentage of renewable energy consumption and 

meet multiple energy demands on the electricity consumption side [5]. The synergistic 

development of hydrogen-electricity coupling refers to an energy network in which 

hydrogen energy and electric energy are transformed into each other with high 

efficiency and synergy. This is the development direction and an important feature of 

new power systems. Building HECESSs can promote the synergistic development of 

hydrogen power and electricity and realize the mutual transformation and efficient 

synergy of hydrogen power and electricity. 

HECESSs provide the capability for peak and frequency adjustments for grids 

and power systems and can guarantee a stable operation of electricity production. 

Therefore, energy storage technologies based on electricity to hydrogen, as well as 

hydrogen storage and hydrogen power generation, as a flexible means of scheduling 

can provide power support for power systems through the conversion mode of 

electricity-hydrogen-electricity and promote the consumption of renewable energy 

sources, such as wind and light. Hydrogen storage meets energy storage needs on a 

large time scale, ranging from short-term system frequency control to seasonal balance 

of energy supply and demand. Hydrogen can achieve emission reductions in all areas 

and can be widely used at the source side, the grid side, and the load side for deep 
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decarbonization policy scenarios [6]. Currently, scholars in this field have been 

exploring hydrogen storage technologies, HECESS operation, and HECESS control, 

and some progress has been made [7,8]. 

Many studies have discussed hydrogen storage from aspects of mathematical 

models, technical characteristics, and development status. Razzhivin et al. [9] 

considered the applications of energy storage devices in power systems. For the 

proposed hydrogen storage system, the principle of implementation of the detailed 

mathematical model and the principle of the control system were described. The 

production, storage, delivery, and utilization of hydrogen were found to be the key 

aspects of hydrogen storage. Moradi et al. [10] provided an in-depth discussion on 

hydrogen storage and delivery schemes and looked into future research issues of 

related technical risks and reliability analysis. Pei et al. [11] classified and analyzed 

the operation and control strategies of an energy storage system in terms of static and 

dynamic characteristics of a hydrogen storage system, the power distribution of the 

HECESS, and the optimization of the efficiency of hydrogen storage. Eriksen et al. 

[12] reviewed the latest developments and current state-of-the-art technologies of 

hydrogen-based systems and analyzed the advantages and challenges of hydrogen 

storage technologies. On this basis, some scholars comprehensively reviewed the 

characteristics and research trends of hydrogen production and storage and looked 

forward to future research trends in these fields in light of the latest research results of 

hydrogen storage technologies [13]. The above works mainly studied the technological 

development of hydrogen storage and discussed the functional characteristics and 

progress of energy storage. However, the analysis of the application of hydrogen 

storage at the source/grid/load side in power systems is still scarce, and there is no 

relatively efficient solution method. 

In the current research context, the paper analyzed the role of coupling hydrogen 

storage and a power system to comprehensively introduce the HECESS. In a HECESS, 

hydrogen storage flexibly regulates resources through three stages, which are 

production, storage, and power generation, and realizes the electricity-hydrogen-

electricity conversion mode. It highly consumes surplus renewable energy to maintain 

the power supply for the system and can solve the problem of seasonal power 

imbalance. In this paper, the applications of the HECESS at the source/grid/load side 

is comprehensively summarized. The paper also deeply explores the effectiveness of 

deep reinforcement learning (DRL) algorithms as the solution for HECESS models. 

One of the core problems that the paper aimed to solve is how to aggregate coordinate 

and optimize the allocation of hydrogen storage resources and construct a model with 

balanced power and with the integrated participation of source/grid/load/storage in a 

larger time scale and spatial scope. The related research on HECESSs needs to be 

further developed. 

The rest of the paper is organized as follows: in Section 2, current applications of 

hydrogen storage technologies, open research issues, and the prospects in HECESSs 

are outlined. In Section 3, HECESS models are summarized. Section 4, the different 

applications of HECESSs the source/grid/load side are summarized and analyzed. In 

Section 5, models using DRL solution algorithms in different scenarios are discussed. 
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In Section 6, challenges and open research issues on the future technological 

development of hydrogen storage are provided. In Section 7, the study is summarized. 

2. Open issues and prospects of hydrogen storage technologies 

In a HECESS, hydrogen storage realizes the flexible regulation of resources 

through electricity-hydrogen-electricity energy conversion. It converts electrical 

energy into hydrogen energy through the interconvertibility between electricity and 

hydrogen energy, realizing the long-term storage of energy. When the demand for 

electricity increases, it converts hydrogen energy into electricity, realizing the efficient 

use of energy. Figure 1 compares the applicable scale and storage duration of various 

energy storage technologies. Distinguished from other energy storage methods, 

hydrogen storage shows a better long-term energy storage performance in terms of 

storage time and storage capacity. It has the advantages of large energy-storage 

capacity, long storage period, and good flexibility. 

 
Figure 1. Applicable scale and storage duration of different energy storage technologies. 

Hydrogen storage technologies can eliminate energy volatility and uncertainty, 

especially by absorbing excess renewable energy generation. It can address the gap 

between electricity supply and demand and provide a reliable energy supply. The 

structure of hydrogen storage technology and the applications of HECESSs are shown 

in Figure 2. Specifically, hydrogen storage technologies utilize electric power 

electrolysis to produce hydrogen, which is stored in a hydrogen storage device. 

Electrolytic hydrogen production equipment and fuel cells realize the conversion from 

electricity to hydrogen power and from hydrogen power to electricity, respectively. 

When the demand for electricity increases or the supply of electricity is insufficient, 

the stored hydrogen is utilized to feed hydrogen power back into the grid through fuel 

cells or other reaction equipment. To realize the full applications of hydrogen storage, 

a complete conversion chain of hydrogen energy needs to be established. This includes 
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the three links of hydrogen generation, storage generation, and power generation, and 

key technological breakthroughs in these three links. 

 
Figure 2. Structure of hydrogen storage technology and applications. 

2.1. Hydrogen production technologies 

There are many ways to produce hydrogen, such as electrolyzing water to 

produce hydrogen, gasifying coal to produce hydrogen, and so on. Among them, 

electrolyzing water to produce hydrogen is a completely clean method of hydrogen 

production, with low technology costs and high product purity, and is the basis for 

hydrogen storage. Currently, hydrogen production technologies can be divided into 

alkaline electrolysis cells (AECs), proton exchange membrane electrolysis cells 

(PEMECs), solid oxide electrolysis cells (SOECs), and anion exchange membrane 

electrolysis cells (AEMECs). A schematic diagram of these four technologies is shown 

in Figure 3. 

 
Figure 3. Diagrams of hydrogen production from different processes of electrolyzing water. 

AECs are the most mature and widely used electrolysis technology, with the 

advantages of a low cost and easy operation. However, there are some problems with 

AEC hydrogen production, such as its low current density and contamination of the 
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electrolyte. Also, during the electrolysis process, if hydrogen and oxygen cross the 

diaphragm, an explosion can easily occur. Moreover, if high-purity hydrogen 

separation is required, other equipment is needed, which increases the cost and 

complexity of the equipment. 

A PEMEC electrolyzer adopts a proton exchange membrane to transport protons 

and isolate each electrode from hydrogen and oxygen precipitation, and it has a 

compact structure. It has the advantages of high current density, high hydrogen purity, 

and high conversion efficiency. Especially, its high flexibility and excellent power 

regulation function are very suitable for the randomness of renewable energy sources, 

such as wind, light, water, etc. The dynamic response time of AECs and PEMECs is 

in the order of milliseconds, which can be adjusted quickly and flexibly according to 

the uncertainty of the renewable energy sources to support a stable operation of the 

power system. Compared with AECs, PEMEC technology has a greater improvement 

in fluctuation adaptability. It is more suitable for flexible-regulation scenarios that 

orient toward the applications of HECESSs. However, it also has shortcomings, such 

as being relatively expensive and less durable. 

AEMEC technology utilizes an anion-exchange diaphragm to prevent gas from 

traveling through the diaphragm. It offers the advantages of a low cost, fast start-up, 

and flexibility. AEMEC technology combines the advantages of AECs and PEMECs. 

However, it is still in the research and development stage due to the problems of 

chemical and mechanical stability and the low maturity of the technology. 

SOEC technology is a high-temperature water-electrolyzing technology 

developed in recent years, with high energy conversion efficiency. It is suitable for 

applications of hydrogen production from nuclear power waste heat and hydrogen 

production from ammonia waste heat. However, its complex structure, faster 

performance decay, and gas cross-contamination caused by the high-temperature 

operation are still to be solved, and it is still in the research and development stage 

[14]. 

The current main problem of electrolytic hydrogen production is high energy 

consumption and low efficiency. Breakthroughs in key technologies should focus on 

reducing the equipment cost, improving the energy efficiency of electrolyzers, and 

building a centralized large-scale production system. 

2.2. Hydrogen power generation technologies 

Fuel cells convert the chemical energy of hydrogen directly into electrical energy, 

which can avoid the conversion loss of intermediate energy. Therefore, hydrogen 

power generation can achieve higher power generation efficiency and is more efficient 

and environmentally friendly, making it more practical. Fuel cell technologies can be 

categorized into two types according to the operating temperature: high temperature 

and low temperature. Low-temperature fuel cell technologies include alkaline fuel 

cells (AFCs), proton exchange membrane fuel cells (PEMFCs), and phosphoric acid 

fuel cells (PAFCs). High-temperature fuel cell power generation technologies include 

solid oxide fuel cells (SOFCs) and molten carbonate fuel cells (MCFCs). 

In applications of hydrogen storage for renewable energy, the focus is on solid-

polymer-type PEMFC technology using pure hydrogen as fuel, which has the 
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advantages of high power density, high energy conversion efficiency, low-temperature 

startup, and environmental protection. It is suitable for distributed power generation, 

removable power, and emergency power scenarios. A comparison of the 

characteristics of different types of fuel cells is shown in Table 1 [15]. 

Table 1. Comparison of characteristics of different fuel cells. 

Type Operating temperature Application field Advantage Disadvantage 

AFC <80 ℃ Backup power/transportation Good current response Mainly used for space 

applications 

PEMFC 80–100 ℃ Backup power/distributed generation Fast starting speed/high energy 

conversion efficiency 

Expensive catalyst 

PAFC 150–200 ℃ Distributed generation/cogeneration High efficiency of cogeneration Low current density and 

expensive catalyst 

SOFC 800–1000 ℃ Stationary power station/cogeneration The electrolyte is reusable and 

low-cost 

Metal corrodes easily 

MCFC 600–700 ℃ Carbon capture power generation 

system/cogeneration 

Good electrical conductivity and 

high current density 

Slow start 

According to the Carnot cycle, the maximum efficiency of a fuel cell is related to 

its operating temperature. However, the efficiency of an actual fuel cell is affected by 

a variety of factors, such as the design and materials of the cell, operating conditions, 

the load demand, and the purity of fuel and oxygen. Different types of fuel cells have 

different operating temperatures and reaction characteristics, which affect the range of 

their maximum efficiency. Reducing the current density of a fuel cell below its 

maximum power density value helps to reduce cell voltage loss, thus increasing its 

efficiency. The net efficiency equation for a fuel cell system is given below: 

𝜂FC  =  

𝑊out
𝜂out

 − 𝑊con

HHV × 𝑚con
 (1) 

where Wout is stack output energy, ηout is power output efficiency, Wcon is ancillary 

consumption energy, HHV represents the high heating value of fuel cells, and mcon is 

the mass of hydrogen consumed. 

Among them, PEMFCs and AFCs have a fast start/stop speed and are suitable for 

hydrogen fuel cell vehicles and backup power generators in electric power systems. 

PAFCs, MCFCs, and SOFCs have high operating temperatures and are suitable for 

distributed power generation and cogeneration. In terms of conversion efficiency, 

PEMFCs, AFCs, MCFCs, and SOFCs have an electrical conversion efficiency of 

about 60%. The efficiency of PAFCs, MCFCs, and SOFCs can be up to 85% when 

they operate as cogeneration. 

2.3. Hydrogen storage technologies 

Economic, efficient, and safe hydrogen storage technologies are the key to 

promoting the scale applications of hydrogen storage in power systems. The 

development of hydrogen storage technologies is the basic premise of hydrogen power 

energy systems. Compared with other fuels, hydrogen has high energy density but low 

bulk energy density. Therefore, a major prerequisite for building a hydrogen storage 

system is to store and transport hydrogen at a higher volumetric energy density. 

Hydrogen storage technologies are categorized according to the physical state of 
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hydrogen, as shown in Figure 4, which mainly comprise high-pressure gaseous 

hydrogen storage, liquid hydrogen storage, and solid hydrogen storage. Currently, 

high-pressure gaseous hydrogen storage technology is the most commonly used 

hydrogen storage technologies [16]. 

 
Figure 4. Different hydrogen storage technologies. 

The most common and direct method of hydrogen storage is high-pressure 

gaseous hydrogen storage. High-pressure gaseous hydrogen storage has the 

advantages of low cost and fast charging and discharging speeds. Therefore, it is 

widely used in HECESSs. However, it has the disadvantages of low density and poor 

safety. Cryogenic liquid hydrogen storage liquefies hydrogen and stores it in a 

cryogenic vacuum adiabatic device. It has high volumetric hydrogen storage density 

and high purity of liquefied hydrogen, but the liquefaction process consumes a lot of 

energy. Organic liquid hydrogen storage makes up for the low density of high-pressure 

gaseous hydrogen storage, and it can be recycled many times. However, the storage 

process is costly and the operating conditions are harsh. Liquid ammonia hydrogen 

storage is an emerging chemical hydrogen storage method with high hydrogen mass 

capacity, which makes liquid ammonia hydrogen storage a better potential for 

hydrogen storage. However, there are some challenges and limitations of liquid 

ammonia hydrogen storage technology, such as evaporation loss of liquid ammonia 

and hydrogen release and recovery. In addition, the preparation and handling processes 

of liquid ammonia need to be considered in terms of environmental safety and energy 

consumption. 

In terms of physical adsorption, hydrogen is adsorbed on the solid surface of 

carbon-based materials. The adsorbed hydrogen can be adsorbed and desorbed at high 

rates. However, the technologies of carbon-based materials are not yet mature [14]. In 

chemical hydride hydrogen storage, hydrogen is chemically combined with a metal or 

metal alloy to form a metal hydride. Its hydrogen storage bulk density and high safety 

have a greater potential for development. 

The future lies in the field of HECESSs, which can maintain the flexibility and 

economy of hydrogen storage. HECESSs can strengthen the scale applications of pure 

hydrogen, pure ammonia combustion engines, and other technologies [17]. At the 

same time, it is also necessary to establish the mechanism of electricity-hydrogen 

synergy to promote better complementarity and synergy between the two systems. 
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3. Models of hydrogen-electricity coupling energy storage systems 

Hydrogen has dual attributes of energy and resource, bridging and linking all 

types of energy sources. Among common secondary energy sources, green power and 

green hydrogen are the best choices. Hydrogen-electric coupling can reduce or balance 

the impact of randomness and volatility on power systems and can consume new 

energy sources. This is the development direction and an important feature of new 

power systems. At present, experts and scholars have carried out a series of 

prospective research works on HECESSs. 

3.1. Coupling characteristics of HECESS 

A HECESS converts fossil and renewable energy sources into two types of 

secondary energy, which are electricity and hydrogen, based on technologies related 

to hydrogen storage. As shown in Figure 5, in the analysis of the coupling mechanism 

of the HECESS, both the power system and the hydrogen system have complementary 

potentials. At the system operation level, the power system can realize flexible 

hydrogen production based on the surplus renewable energy in the system, supplying 

power to key equipment in the hydrogen supply chain, such as compressors, and 

providing diversified hydrogen applications. Considering that power systems need to 

meet real-time supply and demand balance, hydrogen energy systems have a certain 

buffering capacity in all aspects of production, storage, and generation. Therefore, 

hydrogen energy systems can flexibly and efficiently provide auxiliary services, such 

as backup power generation and long-term energy storage for the power system. The 

establishment of HECESSs is conducive to easing the transmission and transportation 

pressure of power grids at lower voltage levels. At the same time, power systems with 

a high percentage of renewable energy consumption can produce high-purity and low-

carbon hydrogen energy through electric hydrogen generation technologies. The 

hydrogen system then provides load management services to the power system based 

on hydrogen generation technologies, thereby improving power quality and reliability. 

 

Figure 5. Schematic diagram of HECESSs. 
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3.2. Models of HECESS 

Considering the fast dynamic response of electrolyzers, the electric hydrogen 

production technologies are generally described by a simple linear model in 

optimization studies of HECESSs [18]. A linear efficiency constant is usually used to 

describe the relationship between input power and output power [19]. The electrolytic 

cell can decompose water into hydrogen and oxygen, and its output power can be 

expressed as [20]: 

Mel(t) = ηelPel(t) (2) 

where Pel and ηel are the input power and the conversion coefficient of an AEC, 

respectively. 

A fuel cell uses hydrogen and oxygen as fuel and converts chemical energy into 

electrical energy to be stored, and its output power can be expressed as: 

Pfc(t) = ηfcMfc(t) (3) 

where Mfc and ηfc are the power input from the hydrogen storage tank to the fuel cell 

and the conversion coefficient of a PEMFC, respectively. 

In terms of thermodynamic characteristics, the energy conservation equations of 

the simple linear model are shown as: 

Hel(t) = (1 − ηel)Pel(t)ηheat (4) 

Hfc(t) = (1 − ηfc)Pfc(t)ηheat (5) 

where Hel and Hfc are the heating absorption power of the circulating water in the heat 

supply network produced by the AEC and PEMFC, respectively, and ηheat is the 

heating conversion coefficient. 

Hydrogen storage tanks are used to store hydrogen produced by AEC electrolysis 

and also to provide hydrogen for chemical reactions in PEMFCs. The mathematical 

model of the hydrogen storage tank energy storage at time t can be expressed as [21]: 

Etank(t) = Etank(t − 1) + (Pel(t − 1) ηelη'el − 
𝑃fc(𝑡−1)

𝜂fc𝜂tank𝜂′fc
 ∆t (6) 

where Etank(t) is the energy stored in the hydrogen storage tank at time t, while η'el and 

η'fc are the efficiency values of the electrolyzer and fuel cell, respectively, and ηtank is 

the working efficiency of the hydrogen storage tank. 

Based on this, in hydrogen production, Li et al. [22] developed a model of an 

electric hydrogen plant that accounted for the cogeneration of heat and hydrogen. The 

model scheduled hydrogen and thermoelectricity according to temperature and was 

integrated with an active distribution network and district heating network systems. 

Pan et al. [23] further developed a cogeneration model, taking into account the start-

stop characteristics of electric hydrogen production and a seasonal hydrogen storage 

model. Lin et al. [24] modeled a more complex nonlinear electric hydrogen generation 

system by considering various factors, such as stack lifetime degradation rate, 

auxiliary equipment energy consumption, etc., and processed it into a linear model by 

using a segmented linear method. The models mentioned above contributed to the 

optimization of scheduling and hydrogen storage schemes for electrolytic hydrogen 

production facilities, thereby enhancing system efficiency and sustainability. 

In terms of hydrogen power generation, a study constructed a day-ahead optimal 

scheduling model of a regional HECESS that converted electricity into gas [25]. The 

fuel cell power generation and heat production efficiencies were characterized as a 

quintuple function of the output electric power specification. Tao et al. [26] further 
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established a hydrogen fuel cell model that took into account the load-fuel 

consumption variation to minimize the energy consumption of fuel cell vehicles. The 

establishment of these models provides reference and guidance for the optimal 

scheduling of HECESSs and hydrogen fuel cell vehicles. By considering various 

factors, such as energy consumption and efficiency, a more dynamic and effective 

energy scheduling strategy is realized. 

In terms of hydrogen storage, Li et al. [27] proposed the concept of a hydrogen 

supply chain integrated into an electric network for seasonal storage. A daytime 

hydrogen storage model, taking into account charging and discharging constraints and 

hydrogen storage constraints, was developed to solve regional and seasonal imbalance 

problems and guarantee the hydrogen energy supply. Considering model charging and 

discharging constraints and hydrogen storage constraints, Taweel et al. [28] 

established an hourly hydrogen storage model based on the demand response, which 

further considered the minimum hydrogen storage constraints to participate in optimal 

scheduling. Hydrogen storage is required to realize energy storage with large planning 

and a long-term scale. To solve the difficult problem of inter-seasonal hydrogen 

storage, Pan et al. [29] proposed a two-layer mixed-integer planning model for an 

energy system integrating electricity and hydrogen. The operational state of seasonal 

hydrogen storage was considered in the two-layer model to highlight the role of 

hydrogen in renewable energy penetration and seasonal complementarity. These 

studies provide important theoretical and methodological insights into the field of 

hydrogen storage and help to address the challenges of balancing supply and demand 

for long-duration storage and inter-seasonal storage. 

The above analysis shows that researchers have adopted different approaches and 

models to solve the equilibrium problem of hydrogen supply. On the one hand, they 

focused on the construction of hydrogen production facilities to meet the local demand 

and to reduce the cost and energy consumption of inter-regional delivery of hydrogen. 

On the other hand, they considered large-scale long-term hydrogen storage 

technologies to enable the release of hydrogen supply during peak demand. In 

addition, they modeled inter-seasonal hydrogen storage, which provides important 

efforts and contributions in eliminating regional and seasonal imbalances and 

guaranteeing the balance and reliability of hydrogen supply. 

3.3. Optimal planning and operation of HECESS 

Compared with electric-to-gas conversion models of electro-gas coupled 

integrated energy systems, HECESSs omit the hydrogen-to-gas conversion and deliver 

hydrogen directly to the hydrogen fuel cell after the electrolytic hydrogen production 

process. This prevents the loss of energy during the conversion process, and hence the 

energy conversion efficiency is higher. Therefore, many scholars have further carried 

out research on coupled systems. Considering the advantages of multi-energy 

complementarity between different energy sources, Zheng et al. [30] developed 

hydrogen storage devices for multi-level energy development. The corresponding 

optimization design problem was established, and the optimal capacity configuration 

of the system and the corresponding operation strategy were determined. Cheng et al. 

[31] proposed a two-tier decentralized planning approach for multi-energy coupled 
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systems and a two-tier extended planning model for multi-energy coupled systems that 

considered decentralized emission constraints. The upper-layer planning took into 

account the optimal solution of the multi-area HECESS with electrical networks. The 

lower-layer planning investigated the optimal energy-supply allocation method for the 

regional electrical HECESS, taking into account carbon emission constraints. Jiang et 

al. [32] proposed a planning method for a coupled wind-hydrogen-electric network by 

considering traffic flow capture and solving the problem of siting and sizing of 

hydrogen refueling stations and wind farms under this coupled network. 

The basic process of system optimization is as follows. First, the planning model 

of the scene is established. Then the renewable energy output is predicted by 

combining equipment selection and site conditions. The optimization variables of the 

model are selected by comprehensively considering the relationship between load and 

power. An optimization model with a system constraint and a fixed capacity is 

constructed based on the power balance of the grid and the actual physical limitations 

of each power generation subject. It is usually a set of equations containing component 

characteristics and system operation characteristics. The optimization objective 

generally needs to consider technical, economic, and environmental indicators [33] to 

achieve high efficiency, feasibility, and sustainability of optimization. Economic 

indicators include energy cost, whole-life-cycle cost, and cost of lost power. Technical 

indicators include equipment performance degradation and response time. 

Environmental indicators include energy storage efficiency, environmental 

friendliness, etc. Finally, the optimization model is solved to determine the hydrogen 

storage configuration. The reasonable selection of the optimization method will also 

affect the optimal solution and solving efficiency of the model. 

At present, the commonly used optimization methods mainly include classical 

optimization methods, such as the probabilistic method and linear or nonlinear 

programming method [34]. Such methods are suitable for solving single-peak 

functions, but their shortcoming is that they are easy to fall into local optimal solutions 

in optimization problems with multiple local optima. Stochastic optimization methods 

include genetic algorithms [35], particle swarm algorithms [36], and many other 

algorithms. Stochastic optimization methods, compared with classical optimization 

methods, can optimize to obtain the global optimal solution, depending on the initial 

value. However, its search efficiency is low and it is difficult to obtain the same 

optimized solution in multiple optimizations. In recent years, machine learning 

techniques have been integrated into metaheuristics to solve combinatorial 

optimization problems [37]. The aim is to improve the performance of the algorithms 

in terms of solution quality, convergence rate, and robustness. Among them, DRL has 

received much attention due to its excellent performance in high-uncertainty 

operational problems. To this end, the paper presents a comprehensive literature 

review of DRL and its application to HECESSs, as will be shown in Section 5. 

It is worth noting that current experts and scholars pay a high degree of attention 

to the planning and operation of HECESSs. The existing research and practice mainly 

focus on optimization planning and the benefit analysis of a single or partial electric-

hydrogen coupling link or technology under the established optimization goal. The 

potential multidimensional value of HRCESSs has not yet been comprehensively 
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analyzed from the perspectives of system modeling, benefit assessment, investment 

planning, and optimized operation. For example, there is still a lack of work on 

analyzing the cost of detailed hydrogen production, power generation, storage, and 

transportation. In the synergistic planning studies of HECESSs, there are relatively 

few studies that analyzed the architecture of future energy forms of electric power 

systems and hydrogen systems. 

4. Applications of HECESS in power systems 

The positioning of a HECESS in a power system is different from those of other 

energy storage modes, mainly in terms of long periods of action, trans-seasonal 

storage, and large-scale storage. An overview of hydrogen storage and its applications 

in power systems is shown in Figure 6. In this section, the applications of HECESSs 

at the source, grid, and load sides of power systems are summarized and analyzed. 

 

Figure 6. Hydrogen storage and applications in power systems. 

4.1. Applications of HECESS at source side 

At the power supply side, direct grid integration of a high percentage of wind 

power has a higher impact on a power system, and the output exhibits more 

stochasticity and volatility. This is mainly due to the uncertainty of weather conditions 

and energy supply from renewable energy sources, leading to instability in power 

system operation. This situation can lead to the occurrence of wind and light 

abandonment. Hence, hydrogen is used as inter-seasonal energy storage, and the 

hydrogen produced by consuming excess energy is kept in hydrogen storage devices 

that can also supply hydrogen loads. When the peak demand for electricity or 

renewable energy supply is insufficient, hydrogen storage can cut the peaks and fill 

the valleys to smooth the power output curve of wind, light, and other power sources 

and enhance the deep consumption of renewable energy [38]. Hydrogen storage 

technologies can realize the smooth scheduling of renewable energy and extend the 
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power supply time. Based on the rapid-response capability of hydrogen storage to 

fluctuating renewable energy, output is smoothed to help solve the volatility and 

intermittency of renewable energy [39]. This improves the stability and reliability of 

power systems, which in turn realizes the friendly grid connection of clean energy 

sources, such as wind and solar. In addition, the construction of hydrogen fuel power 

stations based on hydrogen-rich or pure-hydrogen gas turbine technologies can 

provide the inertia support for new power systems. A part of the flexible load is 

curtailed to enhance the frequency stability of systems under load fluctuation and 

contact line interruption [40]. 

4.2. Applications of HECESS at grid side 

At the grid side, new power systems present low inertia characteristics, which 

makes the stability of grid operation deteriorate, easily triggering oscillations [41]. 

Generally, hydrogen storage power stations are reasonably deployed at key nodes in a 

system, such as large-scale new energy aggregation and intensive load access. The 

hydrogen gas turbine in hydrogen storage power stations can provide part of the inertia 

support on the grid side, slowing down the fluctuation of grid frequency. In addition, 

hydrogen storage power stations also have the ability of a two-way speed change and 

can be used in a short period for rapid power output or energy storage. This capability 

allows hydrogen storage power plants to provide peak-frequency regulation services 

for the power grid. A hydrogen storage power station adopts the conversion method 

of electricity-hydrogen-electricity: when power supply and demand are imbalanced, 

the hydrogen storage power station will be connected to the end of the blocking line 

of the transmission and distribution system. At this time, the high-capacity hydrogen 

storage can act as a virtual transmission line. It will be charging during the low valley 

load time and discharging during the peak load time. This reduces transmission and 

distribution system capacity requirements and alleviates the impact of the system 

blocking transmission and distribution line capacity on grid power [42]. 

Due to climatic factors, renewable energy output shows seasonal characteristics, 

as well as uncertainty [43]. This leads to an imbalance between the supply and demand 

of electricity in power systems on a long-term scale. The intervention of long-term 

hydrogen storage can realize the seasonal regulation of electricity. Therefore, the use 

of hydrogen production technologies in hydrogen storage power plants combined with 

hydrogen storage technologies can store hydrogen for a long period to realize the inter-

seasonal and inter-regional supply of energy. At the same time, hydrogen power 

generation technologies can be utilized for off-site transmission of power to ensure a 

balanced power supply. In addition, using the grid as a bridge for energy transfer and 

adopting seasonal hydrogen storage technologies can solve the inherent spatial and 

temporal imbalance between renewable energy hydrogen production and hydrogen 

loads. 

4.3. Applications of HECESS at load side 

At the load side, hydrogen storage can provide various types of auxiliary services 

for the grid to meet the diversified needs of peak shifting, frequency regulation, grid 

rotation, and power standby. Hydrogen storage buildings/parks can be broadly 
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categorized into centralized energy storage and distributed energy storage. The 

centralized storage structure is mainly for multiple buildings and energy centers to 

share power. Distributed energy storage structures, on the other hand, share power 

among buildings. Fan et al. [44] proposed a distributed real-time scheduling method 

for multiple buildings in a smart park based on the DRL of multiple intelligences by 

utilizing the complementary characteristics of electricity and hydrogen and the energy 

interaction between buildings. Utilizing HECESSs to build hydrogen-energy buildings 

or parks can ensure the continuous supply of electric power to the buildings and time 

can assist in peak shifting and frequency regulation to send the excess energy back to 

the grid. 

The new power system construction concept evolves from the traditional source-

follows-load to load-follows-source. In this context, it is very important to tap the 

flexibility resources at the load side. Hydrogen generation and refueling stations can 

be an important new type of flexible regulation resource at the load side to participate 

in the load demand response. Hydrogen refueling stations connect upstream hydrogen 

production and transportation to downstream applications and are an important hub 

for hydrogen energy transportation. In addition, connecting renewable energy sources 

to the power grid, hydrogen grid, gas grid, and heat grid can accelerate the energy 

transition process. In the future, building multi-energy HECESSs, such as electricity-

hydrogen systems, will become one of the typical scenarios at the load side. 

5. Deep reinforcement learning algorithms for HECESS 

Due to the complexity of planning models of HECESSs, the performance of 

traditional optimization methods in terms of solution quality, convergence rate, and 

robustness is not outstanding. HECESSs that consider multiple energies, such as 

electricity-hydrogen-cooling-heating, have higher requirements on an algorithm’s 

solution efficiency and accuracy. Traditional model-based methods make it difficult 

to choose appropriate models for an actual energy system [45,46], and many of the 

assumptions made to simplify the model make it not applicable to real-world situations 

[47]. To improve the efficiency as well as the accuracy of solving the models of 

HECESSs, this paper proposed model-free algorithms, such as DRL. The algorithms 

show great potential for online optimization by learning strategies in the interaction of 

intelligence with their environment [48,49]. Overall, in this section, the fundamental 

knowledge of the Markov decision process (MDP), reinforcement learning (RL), and 

deep learning (DL) is introduced. Then, the combination of RL and DL is described, 

which results in the formation of DRL. Finally, the details and motivation of 

applications of DRL behind the relevant literature are reviewed. 

5.1. Markov decision process 

RL and DRL are types of learning that map environment states to actions. 

Through feedback from the environment, agents perceive the strengths and 

weaknesses of their behavior and continuously modify it to ultimately obtain the 

maximum cumulative reward. This kind of learning problem is generally described by 

the MDP [50]. 
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In a stochastic dynamic system, if the next state, St+1, of the agent is only related 

to the current state, St, but not related to the earlier historical state, the system is said 

to have the Markov property: 

p (st+1 | st) = p (st+1 | st , st−1, . . . , s1, s0) (7) 

When the environment state of the agent has the Markov property, the agent 

selects a behavior in the current state and transfers it to the next state. Such a sequential 

process is the MDP. The MDP can generally be represented by five tuples: 

MDP ~ {S, A, P , r, γ} (8) 

where, S is the state space of the agent; A represents the behavior strategy space of the 

agent; P: S × A × S → [0, 1] is the transition probability; r : S × A → ℝ is the 

immediate return that the agent gets from the environment; γ ∈ [0, 1] is the discount 

factor, which reflects the value proportion of future rewards at the current moment; 

and cumulative return Gt = rt + 1 + γrt + 2 + · · · = ∑ 𝛾𝑘  𝑟𝑡 + 𝑘 + 1
∞
𝑘 = 0 . 

The above MDP assumes that the system state is completely observed by the 

agent. However, in most cases, the agent can only observe a part of the system state. 

Therefore, considering the uncertainty introduced by partial observation, a partially 

observable Markov decision process (POMDP) is proposed to establish the decision 

model. The POMDP is a mathematical framework for modeling the situation in which 

the decision-maker only has part of the information of the system state. The POMDP 

is an extension of the MDP, which considers the situation that some status data are 

missing or considered uncertain. It can be described as a six-tuple (S, A, P, r, Ω, O), 

where (S, A, P, r) are denoted in the same way as in the MDPs, while Ω and O 

represent the set of observations and their corresponding observation probabilities, 

respectively. 

Under the MDP, Li et al. [51] defined state value function vπ(s) and behavior 

value function qπ(s) based on policy π. 

5.2. Reinforcement learning 

Reinforcement learning mainly focuses on how agents make decisions on 

environmental stimuli to maximize long-term cumulative rewards, thus forming a 

mapping relationship between the state and the behavior [52]. The interaction between 

an intelligent agent and an unknown environment in reinforcement learning is shown 

in Figure 7, which mainly consists of the following steps: 

1) In the current state, st, the agent selects behavior at according to behavior value 

function Q and behavior strategy πt; the corresponding response of the unknown 

environment to behavior at taken by the agent will be transferred to the next state, 

st+1, and a reward signal, rt, will be fed back to the agent 

2) The agent updates its behavior value function Q through environmental feedback 

rt 

3) Guide the subsequent behavior strategy πt 

4) Return to Step 1 and repeat the above process 

Within this learning mechanism, the agent’s behavior in a certain state will be 

selected many times through the role of value function Q and behavior strategy πt. 

Therefore, in the case of a time-varying environment, the agent can seek the maximum 

cumulative return through continuous interaction with the environment to 
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continuously update the strategy so that the algorithm can achieve the purpose of 

tracking the changes in the environment [53,54]. 

 

Figure 7. Framework of reinforcement learning. 

5.3. Deep learning 

In RL, the agent typically uses a table or a simple function to represent its policy 

or value function, which limits the agent’s ability to handle complicated problems with 

large-scale environments and high uncertainty, thus further limiting its applications in 

HECESS operations. Therefore, DL has been introduced to assist RL in dealing with 

these challenges. DL is a subset of machine learning based on deep neural networks 

(DNNs). It attempts to simulate human brain behavior and extract important features 

from massive raw data. There are two classical DNN models, which are the 

convolutional neural network (CNN) [55] and recurrent neural network (RNN) [56]. 

As a strong feature extraction structure, the CNN has drawn the great attention of 

numerous researchers in recent years. The CNN layer functions in the CNN-BiLSTM 

model as in Step 1 in Section 5.2 of accepting selected variables as input to the input 

layer and in Step 2 in Section 5.2 of extracting features of the variables to the input 

layer of the BiLSTM layer. The structure of the CNN is shown in Figure 8. The core 

of the CNN is the convolutional layer, which reduces network complexity and the 

number of parameters. In this layer, the characteristics of input data are revealed, 

which can be expressed as: 

ℎ𝑖𝑗
𝑚  =  𝑓[(𝑊𝑚  ∗  x)  +  𝑏𝑚] (9) 

where f is the activation function, and Wm and bm denote the weight and bias of the 

kernel to the mth feature map, respectively. The pooling layer reduces volume size and 

improves computational performance, thus making computation easier, which can use 

maximum or average pooling. 
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Figure 8. Main structure of CNN. 

Unlike the CNN, the RNN extracts the information from prior inputs to determine 

the current input and output. As a typical RNN, a long short-term memory (LSTM) 

network stands out for its excellent ability to capture and retain long-term 

dependencies through integrated memory units and different gating mechanisms 

[57,58]. The main architecture of LSTM can be seen in Figure 9. The memory unit in 

LSTM allows the network to store and access information for a long time. In addition, 

the gating mechanism (including the input gate, forgetting gate, and output gate) 

controls the information flow and enables the network to selectively retain or forget 

information according to the relevance of information. 

 

Figure 9. Basic architecture of LSTM block. 

5.4. Deep reinforcement learning applied for HECESS 

The simple tabular structure limits RL’s ability to describe system characteristics, 

and therefore, DRL combines deep learning and reinforcement learning to deal with 

more complex tasks, such as decision optimization under the settings of high-

dimensional continuous state space and high-dimensional action space [59,60]. The 

general framework of DRL can be seen in Figure 10. According to policy optimization, 

DRL algorithms can be divided into value-based and policy-based algorithms. 
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Figure 10. Basic architecture of DRL. 

Value-based DRL, such as deep Q learning (DQN), tends to optimize action value 

function Q(s, a) to obtain the preference of action selection [61,62]. Therefore, value-

based DRL has higher sampling efficiency and smaller value function estimation 

variance and does not easily fall into local optimization. However, value-based DRL 

methods cannot deal with the continuous action space problem, which limits the use 

of this method in HECESSs. Different from value-based DRL, policy-based DRL (i.e., 

proximal policy optimization) relies on using gradient descent to optimize the 

parameterized strategy, taking into account the expected reward rather than optimizing 

the action value function, which can deal with the issue of high continuous action 

space [63,64]. 

In recent years, HECESSs have attracted extensive attention all over the world 

due to their sustainable development and environment-friendly characteristics [65]. 

However, as more and more renewable energy and flexible loads are incorporated into 

power grids, HECESSs have become a complex dynamic system with strong 

uncertainty, which brings huge challenges to the safe and economic operation of 

HECESSs. Moreover, as mentioned above, traditional model-based methods are not 

suitable for HECESS optimization problems when considering strong randomness. 

Therefore, as model-free optimization algorithms, DRL algorithms have been 

introduced to solve the optimal scheduling problem of HECESSs and have achieved a 

series of successful applications. In the rest of this section, a comprehensive review of 

DRL-based optimization and operation of HECESSs is discussed. 

DRL has been used to deal with the optimal dispatch problems of the source side 

in HECESSs. For example, Yi et al. [66] developed a scalable computational 

framework to facilitate the research of DRL algorithms for the optimization of 

HECESSs that consider nuclear resources. By analyzing the benchmark performances 

of various DRL algorithms, the superiority of DRL algorithms over the traditional 

particle swarm optimization (PSO) algorithm was proved. Yang et al. [67] proposed 

an improved DDPG-based algorithm to cope with the dispatch problems for a 

HECESS while considering the uncertainty of distributed generation, flexible load, 

and heat load. Numerical simulation results showed that this method can adapt to the 

uncertainty of system energy demand and photovoltaic power generation, dynamically 

optimize the output of each energy unit, and reduce the operation cost of the system. 

Zhang et al. [68] applied proximal policy optimization (P-PO) to obtain the energy 
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management policy, which allowed for several optimization targets, including costs of 

operation, battery storage system, and pollution costs. The simulation results showed 

that the total daily cost of the system can be reduced by approximately 2.6% compared 

with those of other methods. In addition, Zhang et al. [69] proposed a dynamic energy 

dispatch strategy solved by PPO for a HECESS combining renewable energy, while 

considering the uncertainty of the load side, intermittency of renewable energy, and 

flexibility of upper-level electricity prices. Xu et al. [70] investigated a DRL-based 

optimization model for the unit commitment problem that can hedge against wind 

power uncertainty. The results showed that the proposed method can effectively 

address the increasingly critical need for solving the unit commitment problem in a 

computationally efficient manner under high penetrations of renewable energy. Alabi 

et al. [71] proposed DRL with an automated hyperparameter selection feature to 

dispatch a real-time multi-energy system, which achieved great success compared with 

rule-based scheduling. These works in the literature mainly focus on solving power 

scheduling problems in HECESSs. By introducing the DRL algorithm, these methods 

can effectively handle the requirements of uncertainty and multi-objective 

optimization. They achieve good performance in terms of reducing system operating 

costs, improving efficiency, and realizing sustainable energy management. 

Moreover, multi-agent DRL (MADRL) has also shown great potential in the 

optimization issue of HECESSs. For example, Monfaredi et al. [72] proposed a 

MADRL-based method for optimal energy dispatch, which integrated gas and power 

systems that considered distributed energy resources, energy storage systems, and 

thermal and electric loads. The simulation results showed that the operating profit was 

significantly optimized and reasonable operating cost was achieved, as well as 

ensuring the safety of the power system. The energy management problem of a multi-

energy hub was transformed into a multi-agent coordination optimization problem 

based on MADRL, which minimized the system operation cost and carbon dioxide 

emissions under the premise of meeting the constraints [73]. Guo et al. [74] proposed 

a real-time decentralized control strategy based on MADRL, which made full use of 

the residual capacity of the photovoltaic inverter to minimize power loss under the 

premise of ensuring voltage safety. In summary, these studies proposed methods for 

using MADRL in HECESSs. By considering the coordinated optimization of multiple 

participants, these methods were able to maximize the operational benefits and reduce 

the operational costs of power systems. At the same time, these methods were also 

able to minimize carbon dioxide emissions and power losses, provided that the 

constraints were satisfied. 

On the other hand, the applications of DRL on the demand side of HECESSs 

were investigated [75]. Zhong et al. [76] proposed a deep reinforcement learning 

framework based on DQN, which realized the dynamic generation of user subsidy 

price to maximize the profit of the load aggregator while promoting demand response. 

Numerical studies showed that users saved up to 8.7% of heating costs and power grid 

companies saved 56.6% of investment. Li et al. [77] constructed a coordinated power 

dispatching framework based on a multi-agent deep deterministic policy gradient, 

combining imitation learning with course learning. The scheduling performance of the 

algorithm under renewable power fluctuations and random loads was verified by case 
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studies. Ye et al. [78] proposed a model-free data-driven method based on the priority 

depth determination policy gradient (PDDPG) method, which can determine the real-

time autonomous control strategy of multi-energy systems and can also achieve 

significantly lower daily energy costs. Zhou et al. [79] established the constrained 

scheduling problem of a combined heat and power system as MDP. On this basis, an 

improved strategy gradient DRL algorithm was proposed. The simulation results 

showed that the algorithm can handle different running scenarios and obtain better 

optimization performance than other methods. Given the uncertainty caused by 

renewable energy and demand response (DR), Dong et al. [80] proposed an optimal 

scheduling framework based on the combination of a soft actor-critic DRL algorithm 

and the interval optimization theory, which led to significant improvements in the 

system economy. Yun et al. [81] proposed a new interpretable multi-agent DRL 

method to realize the automatic production control of a manufacturing system under 

dynamic DR, while maintaining the constraints of production objectives. The 

simulation results showed that this method can save 13.6% and 30.7% of the energy 

cost in one day and three days production cycles, respectively. Xie et al. [82] proposed 

a MADRL method approach that employed an actor-critic algorithm, including a 

shared attention mechanism, to achieve effective and scalable real-time coordinated 

demand response in a grid response architecture. MADRL reduced the net load 

demand by more than 6% compared with those of traditional and state-of-the-art 

reinforcement learning methods. These studies show that the application of DRL on 

the demand side of HECESSs can maximize profit, minimize cost, and optimize 

energy efficiency compared with those of traditional optimization algorithms. 

Introducing the DRL algorithm to solve the optimal scheduling problem of HECESSs 

and promoting the innovation iteration of optimization algorithms and scheduling 

strategies make the application of HECESSs more promising. 

Overall, the above DRL-based approaches can efficiently handle high-

dimensional optimal scheduling problems with uncertainty. Both on the source side 

and the demand side of HECESSs, DRL can achieve better performance than 

traditional methods. The utilization of this method not only improves the scheduling 

performance but also enhances the robustness and adaptability of a system, making 

optimal scheduling more accurate and reliable. 

6. Challenges and open research issues of HECESS 

HECESSs promote the efficient coupling of hydrogen storage with the multi-

energy integration of a power system to enhance its resiliency and flexibility, resulting 

in a more efficient and higher-quality power supply. With the continuous improvement 

of hydrogen production, hydrogen power generation, hydrogen storage, and other 

technologies, HECESSs with multiple energy sources, such as cold, heat, electricity, 

and hydrogen, promote the realization of the goal of deep decarbonization. 

However, the applications of HECESSs still need to continue to be addressed and 

broken through. Hydrogen is categorized into gray hydrogen, blue hydrogen, blue-

green hydrogen, and green hydrogen according to its production source. Green 

hydrogen is hydrogen produced through renewable electricity by electrolyzing water; 

the production process does not produce carbon dioxide and hence green hydrogen is 
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most suitable for realizing a sustainable energy transition. The application of solar 

hydrogen production, biomass hydrogen production, and other methods should be 

actively promoted to facilitate the development of diversified hydrogen production 

methods. But at present, the production cost of green hydrogen is high, and cost 

reduction is the main goal in developing green hydrogen utilization. The economic 

advantages of green hydrogen can be demonstrated through the synergistic reduction 

of electricity costs and equipment costs in hydrogen production. In the future, 100 MW 

and above for a hydrogen production system via electrolyzing water will become the 

mainstream scale. 

As the cost of renewable energy power generation continues to decline, 

renewable energy power generation will become the mainstream form of power 

generation in the future. Coupled with the limited acceptance of grids, off-grid 

renewable energy hydrogen production will become an important green hydrogen 

production scenario in the future. Off-grid wind/photovoltaic hydrogen production 

will continue to develop in terms of system planning and operation, optimal capacity 

allocation, and economic stability control. Grid requirements for flexibility are 

increasing day by day, and hydrogen storage systems will be deeply involved in 

demand-side response services. With the emergence of hydrogen storage in grid peak-

frequency regulation scenarios, the frequency regulation strategy that takes into 

account the start-stop and dynamic response characteristics of hydrogen or fuel cells 

will gradually emerge. Different types of hydrogen storage multi-temporal 

optimization configuration technologies will be gradually improved, and hydrogen 

storage will be used as multi-timescale storage to support the grid inter-temporal 

power balance. 

Considering HECESSs, a zero-carbon energy supply for parks or buildings will 

be realized. Efficient solution techniques for system planning modeling will be the key 

to developing hydrogen storage for scaled access to power systems. Establishing 

effective models of HECESSs can provide the decision support for power grids and 

planning layout for the operation of systems. Various algorithms, such as heuristics 

and artificial intelligence, have been applied to solve the models and realize the self-

learning optimal configuration of HECESSs. Among them, solving HECESS models 

with DRL algorithms has higher solving efficiency and accuracy than traditional 

optimization algorithms. In addition, DRL algorithms perform better for complex 

systems requiring large-scale data processing and complex model training. 

7. Conclusion 

Oriented towards the utilization of new energy development and the realization 

of the goal of deep decarbonization, hydrogen energy is a green energy source that can 

simultaneously solve the energy crisis and environmental pollution problems in the 

future. HECESSs, which couple hydrogen power and electricity, can promote the 

development of a higher proportion of new energy sources and realize the mutual 

transformation and efficient synergy between hydrogen power and electricity. This 

paper took HECESSs as the research object and provided an in-depth summary and 

analysis of the current status of the application technology of electric-hydrogen-

electric conversion from aspects of hydrogen production, hydrogen power generation, 
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and hydrogen storage. The synergistic mechanism of hydrogen storage and electric 

energy has been studied, and the structural model, planning method, and optimal 

dispatch of HECESSs were discussed. The application scenarios of hydrogen storage 

were explored with the links of the source, grid, and load sides as the main line. In 

terms of model solving, considering the shortcomings of traditional optimization 

methods, such as slow solving speed and easily falling into the local optimum, the 

applications of DRL algorithms in multi-energy HECESSs were explored. Finally, 

challenges and salient research questions for the future development of HECESSs 

were presented to inform researchers. 
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DNN deep neural network POMDP partially observable Markov decision 
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DRL deep reinforcement learning RL reinforcement learning 
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storage system 

RNN recurrent neural network 

MADRL multi-agent DRL SOEC solid oxide electrolysis cell 
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