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Abstract: The current impacts of climate change necessitate the promotion and use of renewable energy sources to avert 
the growing environmental and health concerns emanating from the use of fossil fuels. Lignocellulosic biomass (LCB) is 
a promising, renewable, and sustainable energy source based on its abundance and feedstock properties. Anaerobic 
digestion (AD) involves a biochemical process that can convert LCB to biogas through hydrolysis and biomethanation 
processes through the action of microorganisms, such as methanogens and sulfate-reducing bacteria. The hydrolysis of 
LCB releases various reducing sugars, which are essential in the production of biofuels, such as bioethanol and biogas, 
organic acids, phenols, and aldehydes. The resultant biogas can complement energy needs, while achieving economic, 
environmental, and health benefits. Enhancement of the AD process for converting LCB into bioenergy can be realized 
through appropriate pretreatment capable of disrupting the complex lignocellulosic structure and freeing cellulose and 
hemicellulose from the binding lignin for enzymatic saccharification and fermentation. Determining the optimal 
pretreatment technique for AD is critical for the success of the LCB energy production process. This study evaluated the 
application of chemical pretreatment techniques for the improvement of LCB digestion for bioenergy production. The 
study reviewed LCB characteristics, AD processes, and the role of various chemical pretreatment techniques, such as acid, 
alkali, organosolv, ozonolysis, and ionic fluids. The findings of this study can create an understanding of the action 
methods and benefits of different LCB chemical pretreatment techniques, while highlighting the outstanding drawbacks 
that require divergent strategies. 
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1. Introduction 
The growing global energy demand associated with the rising world population and affluence impacts a 

major energy crisis involving the overutilization of fossil fuels, such as coal, oil, and natural gas, which form 
about 80% of the total energy requirement[1]. The overreliance on fossil fuels imposes a depletion challenge 
and immensely persistent environmental degradation, with short- and long-term effects. The glaring threat 
compels the search for alternative energy sources considered clean, renewable, and with the potential to avert 
the dangers associated with fossil fuels. 

Bioenergy, such as biogas produced through the anaerobic digestion (AD) of lignocellulosic biomass 
(LCB), is considered a possible alternative to fossil fuel energy due to its feedstock abundance, widespread 
distribution, and limited adverse environmental effects[2]. The AD of lignocellulosic biomass comprises a 
biochemical process that can convert the biomass into biogas, which is applicable as an energy source, such as 
electricity, heat, or fuels[3]. The techniques and practices are associated with several economic, environmental, 
and climatic benefits. The benefits have seen the adoption and integration of AD in the power industry, with 
several full-scale plants currently in operation worldwide[4,5]. While traditional plants have used bio-renewable 
feedstocks, such as sugar and starch-based crops, current plants have largely adopted LCBs from crop residues 
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and energy crops in the production of bioenergy and other bio-based products. The AD of lignocellulosic 
biomass can potentially produce alternative and supplementary fuels and chemicals through a biological 
conversion process. Traditionally, the AD process has provided attractive and efficient waste treatment and 
conversion methods into biogas, thereby mitigating pollution, while promoting energy recovery[3,6]. 
Lignocellulosic biomass remains undervalued despite its huge potential for biogas production. 

The primary constituents of LCB are 38%–50% wt cellulose, 23%–32% hemicellulose, 10%–25% lignin, 
and 2%–15% extractives, with varying levels of inorganic salts[7]. The interactions between these constituents 
form a highly resistant and recalcitrant biomass structure that can adversely affect its energy valorization. Such 
complexity is aggravated by the formation of heterogeneous embedment of the cellulose fibers in a lignin-
polysaccharide matrix, making it less accessible to enzymatic hydrolysis[8,9]. The complex structure reduces 
surface area accessibility through the crystallization of cellulose, hemicellulose, and lignin. The lignin 
component is considered the rate-limiting proportion in lignocellulose material degradation in either natural or 
industrial processes[10]. Despite the challenges attributable to lignocellulosic bioenergy conversion, it is still 
considered the most promising raw material for renewable biofuel production, considering its availability, 
economic viability, and promising characteristics, such as a good C/N ratio. Most LCBs have favorable C/N 
ratios, with examples such as 20:1 for water hyacinth[11], 11:1 for sugar beet[12], and 28:1 for sugarcane 
bagasse[13]. However, some other biomasses have a high C/N ratio, such as 120:1 for corn cob[14], 60:1 for 
sorghum bagasse[15], and 55:1 for wheat straw. A higher biomass C/N ratio can be a major limiting factor 
affecting the biomethanation process and overall biogas yield. Thus, synergistic integration of low C/N ratio 
biomass with high C/N ratio lignocellulosic biomass in an AD system, such as through co-digestion, presents 
an ideal option to enhance biogas yield for such biomass[8]. 

Pretreatment presents a critical intervention step in the utilization of LCB to optimize its conversion and 
valorize the biomass AD process. Traditionally, chemical, biological, physical, and physicochemical 
pretreatment methods have been commonly applied, with varying levels of success and challenges[16]. The role 
of biomass pretreatment is to remove the physical and chemical barriers that make lignocellulosic materials 
inaccessible by enzymes for the hydrolysis process[10]. The hydrolysis process presents a vital stage in the 
biochemical process for the conversion of lignocellulose materials to sugar-based energy. 

Chemical pretreatment receives the most research interest based on its effectiveness and enhanced 
biodegradation of complex materials[17]. The technique involves the use of chemicals, such as acids, bases, and 
ionic liquids, to alter the physical and chemical characteristics of the biomass and solubilize its cellulose, 
hemicellulose, and lignin[18]. The most popular methods of chemical pretreatment include alkaline, acid, 
ozonolysis, and oxidation pretreatment methods[19]. Although many chemical pretreatment methods have been 
studied for cellulosic ethanol production, only some of them have been applied to biogas production in AD 
processes[18]. 

The choice of a pretreatment technique should be based on its efficiency, economy, and eco-friendliness. 
The adopted pretreatment must focus on easing the accessibility of enzymes to the chemical components of 
the biomass, leading to its depolymerization and biodegradation. Thus, pretreatment is an important tool for 
cellulose conversion processes and is essential to the modification of the cellulosic structure of the biomass, 
making it more available to the enzymes responsible for the conversion of carbohydrate polymers into 
fermentable sugars. Figure 1 presents the types of LCBs and the pretreatment process. 
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Figure 1. LCB pretreatment process[20]. 

2. Anaerobic digestion of lignocellulosic biomass 
Lignocellulosic materials, largely available in their constituent forms of cellulose, hemicellulose, and 

lignin, hold great potential for biogas (biomethane) production through the AD process and liquid fuel 
(bioethanol) production through fermentation[21]. Exploitation of LCB with a well-informed approach can 
unlock the biomass potential and significantly supplement the energy demand as a sustainable energy source. 
Biomass can be obtained from numerous sources, including rural agricultural waste, forest materials, urban 
LCBs collected from municipal and sewage waste, and industrial LCBs contributed by cellulose and agri-food 
industries[22]. The properties of LCB may vary by critical constituents depending on the considered parent 
source (Table 1). Some of the LCBs considered abundant with great bioenergy potential include rice straws, 
wheat straws, agro-industrial wastes, and aquatic macrophytes[23,24]. The bioenergy value of such biomass can 
be exploited through the AD process. The efficiency of AD in biogas generation using lignocellulosic biomass 
can be greatly improved using an appropriate pretreatment process[21]. With many possible pretreatment 
techniques, determining a suitable and specific method particular to a lignocellulosic material with optimal 
pretreatment conditions for an improved rate of hydrolysis remains an area of interest. While a lot of research 
on the pretreatment of lignocellulosic materials in bioenergy production has focused on bioethanol production 
and value-added chemicals, limited work has been done in the area of pretreatment for biomethanation. 

https://www.sciencedirect.com/topics/engineering/cellulose
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Table 1. LCBs and their biomethane potential for select feedstocks. 

Feedstock Cellulose (%) Hemicellulose (%) Lignin (%) C/N ratio Biogas yield (mL CH4/g.VS) Ref. 

Rice straw 32–47 19–27 5–26 80 152–263 [25–27] 

Wheat straw 35–45 20–30 10–15 50–60 250.5 [28–30] 

Corn stover ~35 ~20 ~12 50–64 260.5 [31,32] 

Soya bean straw 40 22 13 20–40 290.8 [33,34] 

Switch grass 39 20 21 80 256.6 ± 8 [35,36] 

Barley straw 37 35 16 54–80 - [37,38] 

Water hyacinth 25 33 10 20 251.3 [8,11,39] 

Sugarcane bagasse 25–47 19–33 14–23 60 247.60 [40–42] 

Poplar 45 21 24 103 81.1 [43,44] 

Green beans 17 16 8 25–30 - [45,46] 

Pine 54 12 24 80 348 [47,48] 

Soft wood stems 40 30 25–35 80–100 125 [49,50] 

Sunflower 34–42 19–33 12–30 73 210–286.1 [51–53] 

Tomato plant 39 29 12 39 128–307 [54,55] 

Enhancing the AD process involves a set-up for efficient substrate degradation targeting balanced critical 
parameters, including pH, temperature, nutrient (C-N-P) composition, substrate total and volatile solids, 
hydraulic retention time, feedstock loading rate, organic loading rate, and management of inhibitors, such as 
NH3 and furfural[56]. Primarily, the nutrient composition plays a critical role that points to its final 
biomethanation potential[57]. For example, the optimal C/N ratio for a suitable LCB substrate should be in the 
range of 20 to 30. High C/N ratios can affect the total ammoniacal nitrogen (NH3-N) and fatty acid production, 
which may also adversely affect hydrolysis and methanogenesis processes, lowering the biogas yield and 
rate[58]. Conversely, a low C/N ratio is associated with the development of excessive ammonia and pH rise, 
leading to unbalanced nutrient composition in the reactor and limited methanogenesis[59]. The biodegradation 
process is also pH-dependent, whereas pH fluctuations can affect the microbial action on the substrate. For 
example, an optimal pH for methanogens lies between 6.5 and 7.5; however, acidogens can adapt to a wide 
pH range between 3 and 12[60]. Acidic pH is known for the formation of volatile fatty acids responsible for 
deeper pH drops and inhibition of biomethanation. 

Similarly, the operating temperature in a digester plays a central role in the efficiency of biomethanation 
by providing a conducive environment for propagation and action by microorganisms[6]. Different microbes 
can adapt to different temperature ranges and thus the temperature range can be psychrophilic (15–25 ℃), 
mesophilic (35–40 ℃), or thermophilic (55–60 ℃). Most optimal-performing plants operate between the 
mesophilic and thermophilic temperatures, with mesophilic being the most popular due to the low energy 
requirement to achieve the necessary temperature with easily achievable thermal stability[61,62]. However, in 
the interest of high energy turnover, thermophilic temperature may be preferred, despite its high energy 
demand, as a traded-off for quick and increased biogas production and low pathogen slurry[57]. 

3. Role of lignocellulosic biomass pretreatment 
Lignocellulosic biomasses are known for recalcitrance, a process of resistance to chemical and biological 

degradation through their crystalline cellulose structure, degree of lignification, structural heterogeneity, and 
complex cell wall composition[9]. Such complication limits the achievement of biomass potential conversion 
and energy release. Thus, pretreatment plays a significant role in overcoming the challenges limiting LCB 
exhaustive biodegradation for enhanced bioenergy generation[63]. The pretreatment process disrupts the 
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recalcitrant structure, leading to the breakage of lignin bonds, allowing hemicellulose degradation, and 
reducing the degree of crystallinity and polymerization of the cellulose[64]. Numerous pretreatment strategies 
have been developed to enhance the reactivity of cellulose and increase the yield of fermentable sugars[65]. In 
summary, the pretreatment strategies seek the following: to produce highly digestible solids that enhance sugar 
yields during enzyme hydrolysis; to limit the degradation of sugars, such as pentoses and other derived forms 
of hemicellulose; to minimize the formation of inhibitors; and to maximize lignin recovery for conversion into 
other valuable co-products[66,67]. Pretreatment also seeks to lower the operating cost of reactors by lowering 
reactor size requirements for the sake of efficiency and minimizing heat and power requirements[66]. 

4. Chemical pretreatment of lignocellulosic biomass 
Chemical pretreatment of LCB can be done with acids, alkalis, and organic solvents to degrade the more 

complex structures of substrates. The technique is regarded as one of the most promising ways of improving 
the bioavailability of carbohydrates because it also removes lignin by reducing polymerization and cellulose 
crystallinity[68]. The efficiency and affordability of chemical pretreatment techniques have made them 
appealing and attractive for adoption in enhancing the biodegradation of complex organic biomass[69]. 
Although sometimes the cost of chemical pretreatment has been perceived to be prohibitive, Jönsson et al.[70] 
established that the cost of catalysts is dependent on the amount used in the pretreatment, as well as on the 
purchase price, where, for example, lime is cheaper than sodium hydroxide, together with the cost of recovery 
and reuse. 

In the following sections, the major chemical pretreatment techniques and their effects on the valorization 
of complex components of various LCBs are discussed. 

4.1. Acid pretreatment 
This involves the application of dilute or concentrated acids to improve the degradation of carbohydrate 

fractions of cellulose through the hydrolysis of hemicellulose. LCB pretreatment with selected acids can 
improve enzymatic hydrolysis, enhancing the release of fermentable sugar following the aided disintegration 
of its rigid matrix[63,65]. Dilute acids, such as H2SO4 and HCL, have been used successfully to treat 
lignocellulosic biomasses, such as switch grass[71], poplar[72], and corn stover[73]. The action of dilute acids, 
such as H2SO4, on biomass leads to the hydrolysis of hemicellulose into xylose and other sugars, which further 
break down xylose to furfural. The action of dilute acids on biomass involves efficient removal and recovery 
of hemicellulose in the form of dissolved sugars and glucose for eventual hemicellulose hydrolysis[74]. This 
improves the digestibility of cellulose in residual solids. Although H2SO4 is the most widely used acid in acid 
biomass pretreatment, other studies have also used nitric acid, phosphorous acid, and hydrochloric acid[75]. 
While the method involves the use of low-concentration acids, it also employs the intervention of thermal 
action, such as an autoclave operated between 130 ℃ and 200 ℃[76]. High temperatures in dilute acid 
pretreatment are useful in enhancing cellulose hydrolysis. The optimal acid concentration is considered to be 
in the range of 0.2%–2.5% v/v, as high concentrations can be toxic, corrosive, and hazardous, inflicting high 
maintenance costs and the possible generation of inhibitory conditions in the reactor[65]. Furthermore, the use 
of concentrated acid calls for a post-treatment recovery strategy, which can further tilt the economic viability 
of the process. 

4.2. Alkali pretreatment 
Alkali pretreatment involves the addition of bases to biomass, leading to an increase in internal surface 

swelling and a decrease in the degree of polymerization and crystallinity of cellulose[64,77]. Alkali action further 
leads to the destruction of links between lignin and other polymers, while ensuring lignin breakdown and 
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freeing biodegradable biomass content[78]. The technique has high efficiency, especially in the delignification 
process. Thus, alkali pretreatment works better for low-lignin-content biomass, as a high lignin content of the 
biomass makes the method less effective[79]. Therefore, the effectiveness of this pretreatment depends on the 
lignin content of the biomass[80]. 

To achieve optimal alkali action on biomass, accurate alkali loading, dosage, and reaction temperature 
are critical parameters to consider[65]. According to Hernández-Beltrán et al.[81], an optimal performance of 
alkali pretreatment demands the use of low concentrations of alkali at a low temperature and atmospheric 
pressure to prevent the generation of toxic compounds, such as furfurals and hydroxymethylfurfurals (HMF). 
High concentrations of alkali have been associated with the degradation and decomposition of 
polysaccharides[65]. The choice of alkali to use in pretreatment has arguably been based on the reagent cost, its 
performance, and its manipulation capability[82]. Out of the various alkali solutions, NaOH, KOH, CaO, and 
CaOH have been greatly used in pretreatment tests based on their merits and demerits[83]. 

Alkali treatment with NaOH and KOH is more effective in improving biomass biodegradability, with 
NaOH extensively used in the pulp and paper industry[77]. The function of alkaline pretreatment is believed to 
be the saponification and cleavage of lignin-carbohydrate linkages[64]. NaOH pretreatment has proven to be 
effective in improving digestibility and methane yield under anaerobic digestion. NaOH treatment of AD-
digested rice straw increased the chemical oxygen demand (COD) of rice straw from 2,311 to 10,488 mg/L, 
as well as the crystallinity index of cellulose[18]. However, the use of NaOH faces the challenge of sodium 
discharge as an effluent in the process, making its substrate difficult to recycle and limiting its commercial 
application[77]. 

The application of NaOH as a pretreatment agent derives its preference from its ability to catalyze under 
mild conditions and efficiently degrade the bond between lignin and hemicellulose in lignin-carbohydrate[65]. 
Such action involves cleaving the ether and ester bonds in the lignocellulose structure and the further cleavage 
of ester and carbon-to-carbon bonds in lignin molecules. In a study to determine the optimal loading rate of 
NaOH in the pretreatment of giant reed, Jiang et al.[84] varied NaOH concentration between 0.5%–2% w/v 
while monitoring the methane yield. The increase in NaOH resulted in a significant methane yield from 217 
mL/g.VS to 355 mL/g.VS following pretreatment with 2% w/v NaOH. Similarly, Kang et al.[85] achieved 
optimal biomethanation for 2% w/v NaOH upon testing with 2%, 4%, 6%, and 8% w/v, while in another study 
by Pavlostathis and Gossett[86], alkali pretreatment of wheat straw resulted in 100% methane production from 
biogas production experiments. In other studies, Fox et al.[87] and He et al.[88] established that rice straw 
pretreated with 4%–10% NaOH increased biogas production by 58%, whereas a combined action of 4% NaOH 
with thermal pretreatment raised the production to 112%. 

In a study to test the effect of LCB with lime (CaO) or Ca(OH)2, Zheng et al.[18] discovered a significant 
improvement in biogas production from rice straw, with the lignin, cellulose, and hemicellulose of rice straw 
showing the highest methane yield of 225 mL/g.VS, which was 74% higher than the control. The results were 
obtained with 9.8% Ca(OH)2 (g/g TS) treatment at 25 ℃ for six days. CaO pretreatment on various 
lignocellulosic materials, such as sugar beet, sugar beet leaves, maize, ensiled hay, and straw, had realized 
increased methane yield from straw, maize, and a mixture of sugar beet and sugar beet leaves but decreased 
methane yield from other feedstocks, such as ensiled hay[89]. 

Comparative studies of the effectiveness of KOH in pretreatment have found that it compares very closely 
with that of NaOH and Ca(OH)2. For example, a comparative study involving the pretreatment of OFMSW 
with NaOH, KOH, and Ca(OH)2 demonstrated that KOH pretreatment generated 13% more biogas than NaOH 
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and Ca(OH)2
[90]. The study recommended further research on biomass pretreatment using KOH, as the area is 

still inadequately studied, with the assumption that KOH would perform just like other alkalines[91]. 

4.3. Organosolv methods 
Organosolv pretreatment presents a method used to extract lignin from lignocellulosic feedstock with 

organic solvents or their aqueous solutions[92]. Some of the organic solvents used in the process include those 
with low boiling points, such as ethanol and methanol, and those with higher boiling points, such as formic 
acid, acetic acid, phenol, glycerol, and acetone[93]. The technique has been popularly applied following the 
challenges of air and water associated with conventional pulping, kraft, and sulfite processes[94]. The 
organosolv process involves the addition of lignocellulose biomass to a combination of organic solvent and 
water with a solid-to-liquid ratio between 1:4 and 1:10 w/w and a solvent concentration of 35–70% w/w[93]. 
Optionally, the rate of reaction can be accelerated by the introduction of a catalyst[95]. However, organosolv 
pretreatment can occur with different organic or aqueous solvents even without catalysts in the temperature 
range of between 100–250 ℃[92]. Organosolv pretreatment provides a highly efficient generation of ethanol, 
lignin, and other biochemicals from LCB compared with other pretreatment techniques[63,95]. The application 
of organosolv presents additional benefits, including ease of recovery of organic solvents through distillation 
and recycled pretreatment[96], isolation of lignin as a solid material, and carbohydrates as a syrup[97], which are 
both possible chemical feedstocks. 

The organosolv method has been considered more viable in the biorefinery of lignocellulosic biomass, 
which focuses on the utilization of all biomass components[96]. However, the technique faces some drawbacks, 
including the high costs associated with energy consumption through the recovery process[95], the extreme 
conditions required following the volatility of organic solvents[98], and the need to wash the pretreated solids 
in organic solvents prior to water washing to avoid re-precipitation of dissolved lignin[99], which leads to 
cumbersome washing arrangements. Upon washing the solids in organic solvents, the pretreated solids undergo 
subsequent enzymatic saccharification and fermentation to produce value-added biochemicals, such as 
bioethanol[66], while a distillation process is employed in solvent recovery from spent liquor[92]. To manage the 
process costs, the organic solvents used should be recycled[96]. The eventual products of the process include 
dry lignin, aqueous hemicellulose, and a relatively pure cellulose fraction[92]. A summary of the oganosolv 
process is illustrated in Figure 2. 

 
Figure 2. Schematic organosolv pretreatment steps for lignocellulosic biomass[92]. 
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Mardawati et al.[100] investigated the effect of organosolv pretreatment on the delignification of bioethanol 
feedstock from empty oil palm fruit bunches. The study used ethanol as an organic solvent, and the results 
revealed significant disruption of the lignocellulosic matrix of the biomass and significantly increased 
hydrolyzability of the pretreated material. The study further obtained a maximum lignin degradation of 27.68%, 
which corresponded to 65% v/v of ethanol with a reaction time of 65 min. Another study by Viola et al.[101] 
investigated the optimization of organosolv pretreatment of wheat straw and eucalyptus residues using 2-
methyltetrahydrofuran (2M-THF) and n-butanol. From the study, biomass fractionation with butanol 
demonstrated significant advantages over 2M-THF under the same process conditions, with a recovery yield 
of free glucose reaching 98% of the theoretical value for butanol compared with 67% for 2M-THF. The 
organosolv pretreatment process for various feedstocks is summarized in Table 2. 

Table 2. Performance of organosolv pretreatment on different feedstock materials. 

Raw 
material 

Solvent Catalyst Pretreatment condition Pretreatment impact/results Ref. 

Temp (℃) Duration 
(min) 

Oat husk Aqueous 
ethanol 

Oxalic acid 210 90 10.27% protein increase [102] 

Rice straw 75% aqueous 
ethanol 

1% M H2SO4 180 30 46.2% glucose yield [103] 

Rice straw Aqueous 
ethanol 

Formic and 
acetic acids 

60–100 10–50 73.17% delignification, 46.62% 
hemicellulose solubilized, and 74.09% 
cellulose release 

[104] 

Sugarcane 
bagasse 

50% acetone 0.17M H2SO4 125 120 98.1% delignification and 74.5% 
cellulose digestibility 

[105] 

Wheat straw 50% acetone None 205 60 79% delignification, 82% 
hemicellulose hydrolysis, 93% 
cellulose recovery, and 71% glucose 
yield 

[106] 

Corn stover 30% ethanol 1% Hydrogen 
peroxide 

150 2880 69.7% glucose conversion [107] 

Barley straw Acetone 0.1–0.35M 
H2SO4 

140–180 40 75.4% glucose conversion and 66.7% 
xylose recovery 

[108] 

4.4. Ozonolysis 
Ozonolysis as a pretreatment method involves an ozone reaction with lignin present in lignocellulosic 

biomass, i.e., delignification, thus allowing for enzymatic hydrolysis of the released sugars for energy 
production[109,110]. According to Kassim et al.[111], the process has minimal effects on the hemicellulose and 
cellulose components of lignocellulosic biomass. Ozone attacks the double bonds and electric donor centers 
present in lignin, hence releasing soluble compounds of lower molecular weight, e.g., formic and acetic organic 
acids, thus changing the material’s pH to be more acidic[112]. According to de Cassia Pereira et al.[113], this 
allows for increased enzymatic hydrolysis yields by allowing increased enzyme access to polysaccharides and 
sugar release. 

According to Onu and Mbohwa[114], the solubility of ozone in water and its instability around compounds 
with conjugated double bonds allow for efficient oxidation of lignin present in lignocellulosic biomass due to 
the presence of C=C bonds. Additionally, Traviani et al.[109] suggested that the process is promising due to the 
low formation of inhibitory compounds, the generation of weak carboxylic acids, minimal effects on sugar 
polymers, selective lignin degradation, and operation at ambient pressure and temperature, with subsequent 
generation of ozone. Inhibitors, such as acetic, formic, and oxalic acids, are produced during this process[115], 

https://www.frontiersin.org/articles/10.3389/fenrg.2018.00141/full#T2
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which are effectively removed by water washing. Mulakhudair et al.[116] further emphasized that the resulting 
solution from the process is void of degradation by-products that interfere with downstream processing, such 
as enzymatic hydrolysis, particularly for Pseudomonas putida and the fermentation of Zymomonas mobilis. 
This method, however, is considered disadvantageous, as the process is expensive due to the requirement of a 
significant volume of ozone[117]. 

Patil et al.[118] conducted a study on the impact of ozonolysis in conjunction with thermal pretreatment on 
rice straw hydrolysis for energy production. The authors estimated the potential scale-up feasibility by 
calculating a net energy balance and obtained a net positive gain of 0.5763 kWh/kg of rice straw using this 
method of lignocellulosic biomass pretreatment. Figure 3 below illustrates the process in which rice straw in 
deionized water is fed into an O2 decomposer before thermal treatment to generate methane in a biomethanation 
chamber. 

 
Figure 3. Ozonolysis and thermal pretreatment for energy production[118]. 

In other studies, ozonolysis resulted in an increase in fermentable carbohydrate release for sugarcane 
bagasse when used as a pretreatment method[112]. In the study, glucose and xylose yields improved from 6.64% 
and 2.05% to 41.79% and 52.44%, respectively, for raw bagasse under the best experimental conditions. Onu 
and Mbohwa[114] further suggested that ozonolysis has been effectively implemented in the pulp and paper 
industry. 

4.5. Ionic fluids 
Ionic fluids used in lignocellulosic biomass pretreatment are solvents containing paired ions that exhibit 

environmental compatibility due to their high thermal stability and negligible vapor pressures, which 
subsequently inhibit the release of toxic or explosive gases during utilization[119]. Ionic fluids have been applied 
in the pretreatment of lignocellulosic biomass through the dissolution of biomass, fractionation of biomass, 
and enzymatic saccharification of the pretreated biomass[120] for biofuel production. According to Moyer et 
al.[121], ionic fluids tend to activate lignocellulosic biomass, reducing biomass recalcitrance and minimally 
affecting the structural components of biomass for subsequent enzymatic energy conversion. Figure 4 
illustrates the utilization of ionic fluids for the pretreatment of lignocellulosic biomass for energy production. 
The harvested LCB undergoes a crushing and filtration process to produce crushed biomass that is then treated 
with ionic fluid to delignify the biomass and dissolve the cellulose component to produce biofuels, 
biochemicals, and biopolymers. 



Clean Energy Science and Technology Volume 1 Issue 2 (2023) 10/19 

 
Figure 4. Pretreatment of lignocellulosic biomass using ionic fluid for energy production[122]. 

Ionic fluids are advantageous essentially due to their ability to significantly reduce cellulose crystallinity 
and the cleavage of acetyl groups in hemicellulose, subsequently resulting in changes in the overall biomass 
properties[121]. This allows for increased access to hydrolytic enzymes for energy conversion. Their ease of use, 
recovery, and reuse after pretreatment are also advantages of this method of pretreatment of lignocellulosic 
biomass[123]. 

The high cost of ionic fluids for the pretreatment of lignocellulosic biomass has proven to be a hindrance 
in the exploration of this method[124]. Socha et al.[125], however, illustrated a closed-loop process for bio-
refineries that could reduce the significant costs associated with the utilization of ionic fluids for the 
pretreatment of lignocellulosic biomass. The authors suggested that the lignin and hemicellulose-derived 
compounds from the initial pretreatment of lignocellulosic biomass could be synthesized back into ionic fluids, 
as illustrated in Figure 5. From the figure, the LCB feedstock undergoes ionic liquid pretreatment that initiates 
enzymatic saccharification, stimulating the fermentation of fuels and chemicals. The process entails the 
depolymerization and conversion of lignin and hemicellulose to ionic fluids recycled through the process. 

 
Figure 5. Closed-loop bio-refinery using ionic fluids derived from lignocellulosic biomass[125]. 

Brandt et al.[126] conducted the pretreatment of pine (Pinus sylvestris), willow (Salix viminalis), and 
ground lignocellulosic biomass (Miscanthus giganteus). The authors found that up to 90% and 25% of glucose 
and hemicellulose, respectively, were released from the original biomass by the combined ionic fluid 
pretreatment and enzymatic hydrolysis, with the ionic fluid liquor containing the majority of lignin and 
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hemicellulose. Sriariyanun et al.[127] pre-treated rice straw with chloline acetate prior to enzymatic 
saccharification with ionic-fluid-tolerant cellulase. From the study, it was proven that ionic fluid pretreatment 
in conjunction with the use of ionic-fluid-tolerant cellulose was beneficial for enhancing sugar production that 
could be used for energy conversion. 

4.6. Deep eutectic solvents 
Deep eutectic solvents (DESs) used in lignocellulosic biomass pretreatment are low-cost eutectic mixtures 

prepared by combining hydrogen bond donors (HBDs) and hydrogen bond acceptors (HBAs)[128]. They are 
liquid in nature when they have a eutectic or near-eutectic composition, appropriately formed by a mixed molar 
ratio of Brønsted or Lewis acids and bases[129]. They portray similar physical and chemical properties with 
ionic fluids[130] with regard to the potential pretreatment properties of lignocellulosic biomass for energy 
conversion. 

According to Scelsi et al.[131], the intrinsic ionic nature of DESs allows them to break the complex 
molecular H-bond, thus stabilizing the hemicellulose-lignin complex and subsequently allowing for easier 
breakage of the covalent bond present in lignocellulosic biomass. The authors further suggested that this 
allowed for the reorganization of the components under very mild conditions without the generation of 
inhibitors of depolymerization of cellulose for energy conversion. Figure 6 illustrates the LCB pretreatment 
process with DESs for energy conversion. The application of the DES breaks the covalent bond binding the 
hemicellulose to lignin, thereby releasing the cellulose-enriched substrate for enzymatic saccharification, 
leading to the release of biofuel products, such as ethanol, butanol, S-HMF, and levulinic acid. 

 
Figure 6. Pretreatment of lignocellulosic biomass with DESs for energy conversion[131]. 

According to Mbous et al.[132] and Bajpai[133], DESs are considered green alternatives to ionic fluids, easy 
to synthesize, and less expensive as a method of pretreatment of lignocellulosic biomass for energy valorization. 
DESs can also be recycled and reused effectively[134] and still exhibit efficient delignification capabilities. 
Among other methods that can be applied for recycling, according to the authors, are electrodialysis, freeze-
drying, membrane separation, and rotary evaporation. This renders the DES method effective for large-scale 
industrial energy production at relatively low costs. Additionally, the intramolecular hydrogen bonds present 
in DESs also enhance the hydrogen bond breakage within the lignocellulosic biomass, thus promoting high 
solubility of the biomass and favorable energy conversion rates[135]. However, Wang and Lee[136] suggested 
that the high-viscous nature of DESs prevents heat and mass transfer during reactions, thus deteriorating the 
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pretreatment performance for subsequent energy conversion. It has also been hypothesized that the presence 
of DESs can inhibit specific enzymes, thereby causing an alteration of the global biocatalytic reaction[137]. 

Kumar et al.[138] conducted a pretreatment process for rice hulls using DESs prior to enzymatic hydrolysis. 
The authors synthesized a DES and conducted conductive-heating pretreatment and microwave-heating 
pretreatment of the rice hulls. The biomass and DES were then separated via filtration prior to comparative 
enzymatic hydrolysis of raw and pre-treated rice hulls. From the study, it was found that up to 100 times more 
glucose could be obtained with the pretreatment as compared with the raw rice hulls. Fang et al.[139] explored 
how to reduce the recalcitrance of lignocellulosic date palm residues prior to pretreatment using DESs for 
energy conversion. The study adopted hydrothermal pretreatment in conjunction with DES pretreatment. From 
the study, the authors highlighted that there was a 1.7× increase in the enzymatic digestibility of the date palm 
residues, accompanied by 25% and 22% increased removal of xylan and lignin, respectively, rather than the 
cellulose crystallinity modification. 

5. Discussion 
The crystalline structure of LCB is the primary cause of its resistance to chemical and biological 

degradation processes. Optimizing LCB biodegradation and unlocking its energy potential demands lignin 
removal that reduces polymerization and cellulosic crystallization. Such can be achieved by chemical 
pretreatment, which in turn enhances biodegradation and biomethanation efficiency. Chemical pretreatment 
methods, such as the use of dilute acids, promise good results in LCB pretreatment; however, its action can be 
enhanced by thermal action for improved efficiency. Additionally, acid pretreatment requires application at 
optimal concentrations for the best performance. High acid concentrations are often characterized by system 
toxicity, corrosion, and the generation of counterproductive inhibitory conditions. Similarly, appropriate 
determination of alkali pretreatment dosage and concentration holds a bearing on the success of 
biomethanation process efficiency, as high concentrations can lead to the degradation and decomposition of 
polysaccharides. Alkali pretreatment is also temperature and atmospheric pressure dependent, as low 
temperature and atmospheric pressure can deter toxic substance formation and enhance biomethanation 
efficiency. The determination of an appropriate chemical pretreatment method requires knowledge of biomass 
lignin content. For example, alkali pretreatment is appropriate for low-lignin biomass but less effective for 
high-lignin biomass. Thus, an effective LCB pretreatment method should be determined based on biomass 
characterization and property determination. 

In mounting efforts to overcome the challenges associated with traditional acid and alkali pretreatment 
techniques, the organosolv method provides a highly efficient generation of ethanol, lignin, and other 
biochemicals from LCB. Additionally, the method presents the advantage of ease of recovery of the used 
organic solvent through distillation and recycling pretreatment. The method is more attractive in its ability to 
fully utilize biomass components. Managing its drawback of high energy demand and solvent volatility can be 
a gateway to ensuring its sustainability and success. 

Ionic fluids are effective in LCB activation, reducing LCB recalcitrance with minimal effect on the 
structural components of biomass. The use of ionic fluids presents the ability to reduce cellulose crystability 
and hemicellulose conversion by acetyl group cleavage, raising the performance of hydrolytic enzymes for 
efficient biodegradation. Ionic liquids, such as [Emim]Cl, [Bmim]Cl, and [Emim]Ac, have been widely 
reported for the pretreatment of lignocelluloses; however, the technique faces the drawbacks of high 
pretreatment temperature and long processing time. Using ionic fluids is relatively easy, with the additional 
benefits of recovery and re-use of pretreatment chemicals. Thus, its performance is promising despite the 
challenge of the cost of ionic fluids, which is prohibitive. 
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Deep eutectic solvents offer an alternative pretreatment that is equally environmentally friendly as ionic 
fluids but with a reasonable cost requirement. The method fits well in industrial applications, considering 
energy input and bioconversion efficiency. However, the method faces the challenge of inefficiency 
occasioned by its viscous nature, which prevents heat and mass transfer during reactions. Its poor performance 
is also attributable to the inhibition of specific conversion enzymes, altering biocatalytic reactions. This 
complicates process efficiency and demands a complementary technique, such as hydrothermal pretreatment, 
to improve enzymatic digestibility. 

Other evolving methods, such as ozonolysis, which do not involve enzymatic hydrolysis, have delivered 
good results and performance efficiency improvements, such as improving glucose and xylose yields. However, 
ozonolysis is considered cost-prohibitive due to the volume of ozone required. 

6. Conclusion 
The concept of sustainable AD and biomethanation of LCB can be realized by developing efficient and 

eco-friendly biomass pretreatment technologies. An assessment of different pretreatment processes suggests 
that an ideal process must overcome the recalcitrant nature of LCB, increase cellulose crystallinity, and ensure 
maximum recovery of sugars along with other industrially relevant bio-products. Here, recent advances in 
selective pretreatment methods based on chemical approaches were reviewed. The effectiveness of chemical 
pretreatment methods for LCB depends on the characteristics of the biomass, optimal operating conditions, 
chemical dosage and concentration, prevention and management inhibitors, and the investment cost of set-up 
and maintenance. Following the noted drawbacks associated with each method, the desired performance can 
still be achieved through complementary techniques, such as physical, thermal, and physicochemical methods. 
Optimizing LCB performance in bioenergy conversion is a key to unlocking the green energy potential for 
sustainable benefits. 
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