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Abstract: The growing global demand for electricity necessitates efficient renewable energy 

solutions, with photovoltaic (PV) systems emerging as a prominent candidate. This study 

presents a novel hybrid Maximum Power Point Tracking (MPPT) algorithm that integrates the 

Artificial Bee Colony (ABC) optimization method with the Incremental Conductance (IC) 

technique, ensuring 100% accurate identification of the Global Maximum Power Point 

(GMPP) under partial shading conditions. Unlike standalone MPPT methods, the proposed 

approach leverages the exploratory capabilities of ABC for global search while utilizing IC for 

fast and precise tracking, achieving a convergence time of 0.37 s and minimal power 

oscillations of 2.7%. Experimental validation demonstrates the algorithm’s superior 

performance, attaining 100% efficiency, significantly outperforming standalone IC (74%) and 

ABC (99.5%) methods. The hybrid ABC-IC algorithm consistently tracks the GMPP, 

delivering 60 W under optimal irradiation (1000 W/m2) and surpassing conventional 

techniques such as P&O, FA, and PSO in terms of convergence speed, robustness, and 

adaptability to dynamic shading conditions. This innovative integration of bio-inspired and 

deterministic MPPT strategies offers a highly efficient and reliable solution for maximizing 

PV energy harvesting in real-world environments. 

Keywords: photovoltaic systems; maximum power point tracking; Artificial Bee Colony 

algorithm; incremental conductance; hybrid optimization techniques; hybrid MPPT algorithms 

1. Introduction 

The notable rise in global electricity consumption has driven extensive research 

and practical applications in energy generation, with a focus on reducing 

environmental impact and pollutant emissions. Renewable energy sources have 

emerged as a sustainable solution, with solar energy standing out due to its abundance 

and wide availability across the Earth’s surface. Solar energy has proven to be 

particularly viable for electricity generation in distributed systems connected to the 

electricity distribution network [1]. 

The contribution of photovoltaic (PV) systems to energy generation continues to 

grow, supported by advancements in academic and industrial research. The design, 

dimensioning, and specification of PV system components are critical and often 

evaluated based on financial viability [2]. Economic analyses of PV systems are 

closely tied to projected energy generation, which is influenced by factors such as 

geographic location and panel technology. Performance models are commonly 

employed to estimate power generation, accounting for key components such as 

panels, power electronics converters (DC-DC, inverters, charge controllers, and 

protection systems). 
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Maximum Power Point Tracking (MPPT) is a critical component in photovoltaic 

(PV) systems, ensuring optimal energy extraction under varying environmental 

conditions such as solar irradiance and temperature. Perturbative strategies, such as 

the Incremental Conductance (IC) method and the Perturb and Observe (P&O) 

method, are widely used for MPPT due to their simplicity and effectiveness. However, 

these methods face several limitations that hinder their performance: 

• Step size dependency: The increment step size in perturbative methods presents 

a trade-off between response time and power oscillations. Small step sizes result 

in slow convergence, while large step sizes cause oscillations around the 

Maximum Power Point (MPP), reducing system efficiency [3–7]. 

• Oscillations: Both transient and steady-state operations are plagued by 

oscillations around the MPP, leading to energy losses. 

• Partial shading challenges: Under partial shading conditions (PSC), PV panels 

exhibit multiple power peaks due to the integration of bypass diodes. These 

include several Local Maximum Power Points (LMPPs) and a single Global 

Maximum Power Point (GMPP). Conventional methods like P&O and IC often 

fail to distinguish between LMPPs and GMPPs, resulting in suboptimal energy 

extraction [8–10]. 

To address these limitations, optimization methods for GMPP tracking have been 

developed, broadly categorized into Soft Computing (SC) methods and Segmental 

Search methods. SC methods, particularly bio-inspired metaheuristics, have gained 

prominence due to their flexibility and ability to handle complex, non-linear 

optimization problems under partial shading conditions [11,12]. These methods are 

computationally intensive but offer superior performance in tracking the GMPP 

compared to conventional techniques. 

Conventional MPPT techniques are further constrained by their step-size 

dependency, which impacts tracking efficiency and dynamic response. As a result, 

various advanced algorithms have been proposed to enhance MPP tracking and 

mitigate power losses caused by shading. An effective MPPT technique should meet 

the following criteria: 

• Stability: The system must provide a reliable response to accurately detect energy 

changes and avoid instability caused by incorrect parameter settings. 

• Fast dynamic response: MPPT algorithms should adapt quickly to changes in 

irradiance and temperature to minimize energy losses during rapid environmental 

fluctuations. 

• Small steady-state error: Once the MPP is reached, the system should maintain 

operation at this point with minimal error to optimize energy conversion 

efficiency. 

• Disturbance robustness: The control system must handle disturbances such as 

input noise, measurement errors, or parameter variations without compromising 

stability. 

• Efficiency across power ranges: MPPT techniques should perform effectively 

under varying irradiance and temperature conditions to ensure optimal energy 

generation throughout the day [13–27]. 

MPPT techniques can be classified into four main categories [13–35]: 
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1) Model-based techniques: These rely on mathematical models or databases of 

panel characteristics under varying conditions. While useful, they may not fully 

adapt to real-world environmental changes. 

2) Heuristic techniques: These use online search algorithms to locate the MPP 

without requiring prior knowledge of panel characteristics. 

3) Training-based techniques: These approaches utilize advanced digital processors 

or microcontrollers to implement algorithms, often incorporating artificial 

intelligence. Although fast and effective, they involve higher implementation 

costs. 

4) Hybrid techniques: These combine elements of different MPPT techniques, 

blending heuristic methods with model-based approaches for enhanced 

performance. 

Among heuristic methods, the Artificial Bee Colony (ABC) algorithm stands out 

as a bio-inspired technique that simulates the foraging behavior of bees. It effectively 

tracks the GMPP under partial shading conditions by leveraging the coordinated 

efforts of employed, onlooker, and scout bees. Employed bees explore known food 

sources, onlooker bees evaluate and select promising solutions based on shared 

information, and scout bees introduce randomness by searching for new potential 

solutions, preventing premature convergence to local optima. This dynamic 

exploration-exploitation balance makes the ABC algorithm highly efficient in 

navigating complex and multi-peaked power landscapes, ensuring reliable and 

accurate tracking of the GMPP in photovoltaic (PV) systems. Additionally, its ability 

to adapt to changing environmental conditions enhances its robustness, making it a 

powerful tool for optimizing energy extraction in real-world solar power applications 

[16–20]. Other bio-inspired algorithms, such as Particle Swarm Optimization (PSO), 

Genetic Algorithm (GA), and Grey Wolf Optimizer (GWO), have also demonstrated 

significant potential in improving MPPT performance under complex conditions [21–

23]. 

Machine Learning (ML) in MPPT: Recent advancements in machine learning 

have introduced a paradigm shift in MPPT techniques. ML-based approaches, such as 

Artificial Neural Networks (ANN), Support Vector Machines (SVM), and 

Reinforcement Learning (RL), have shown remarkable potential in addressing the 

limitations of traditional methods. These techniques leverage historical and real-time 

data to predict the MPP with high accuracy, even under partial shading and rapidly 

changing environmental conditions. For instance, ANN-based MPPT systems can 

learn the non-linear characteristics of PV panels and adapt to dynamic conditions 

without requiring explicit mathematical models. Similarly, RL-based methods 

optimize the MPPT process by continuously learning from the system’s performance, 

enabling robust and adaptive control. The integration of ML in MPPT not only 

improves tracking efficiency but also reduces oscillations and steady-state errors, 

making it a promising solution for modern PV systems [24–31]. 

Recent advancements in MPPT algorithms have focused on hybrid approaches 

that combine the strengths of multiple techniques. For example, hybrid algorithms like 

PSO-GWO, PSO-GA and GA-FLC integrate the global search capabilities of 

metaheuristics with the adaptability of fuzzy logic control, offering improved 

performance under partial shading and dynamic environmental conditions [33–35]. 
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Additionally, emerging algorithms such as Harris Hawks Optimization (HHO) and 

Equilibrium Optimizer (EO) have shown promise in addressing the limitations of 

traditional methods, particularly in terms of computational efficiency and robustness 

[36–39]. 

This study presents a novel hybrid Maximum Power Point Tracking (MPPT) 

algorithm, MPPT-ABC-IC, which combines the Artificial Bee Colony (ABC) 

optimization technique with the Incremental Conductance (IC) method to overcome 

the limitations of conventional MPPT approaches, particularly under partial shading 

conditions (PSC). By leveraging the global search capabilities of ABC to locate the 

Global Maximum Power Point (GMPP) and the precision of IC for dynamic tracking, 

the proposed algorithm ensures 100% efficiency in GMPP tracking, even in complex 

shading scenarios. The study evaluates the MPPT-ABC-IC algorithm within a PV 

system comprising a DC-DC boost converter and a single-phase DC-AC full-bridge 

inverter, enabling a comprehensive performance assessment across different system 

stages. The boost converter optimizes PV voltage, while the inverter supports grid 

integration, ensuring practical applicability. Comparative analysis against traditional 

MPPT-IC and standalone MPPT-ABC methods highlights the superior efficiency and 

adaptability of the proposed approach. This research provides a significant 

advancement in MPPT technology, offering a robust solution for maximizing energy 

harvesting in real-world PV systems under varying environmental conditions. 

2. Operation of photovoltaic systems 

The equivalent circuit of a photovoltaic (PV) cell is depicted in Figure 1, 

illustrating the passive elements comprising a PV panel cell, along with their 

respective voltages and currents. The photocurrent of the PV panel is denoted as Iph, 

with an anti-parallel diode D1, series resistance Rs, and parallel resistance Rp. The 

current and voltage at the PV panel terminals are represented by Ipv and Vpo, 

respectively [34]. 

 

Figure 1. Equivalent circuit of a photovoltaic cell. 

The current of the PV panel is expressed in Equation (1), where the panel current 

accounts for the contributions of all the cells, excluding losses due to shading. These 

losses are influenced by irradiance variations and are described by Equation (2) and 

conductivity losses, as indicated in the second term of Equation (1) [40]. 
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𝐼𝑝𝑣 = 𝑛𝑝𝐼𝑝𝑣 − 𝑛𝑝𝐼𝑜 {𝑒𝑥𝑝 (
𝑛𝑝𝑉𝑝𝑣 + 𝑛𝑠𝐼𝑝𝑣𝑅𝑠

𝑛𝑝𝐼𝑝𝑣 𝐴𝑉𝑡
)} −

𝑉𝑝𝑣
𝑛𝑠
𝑛𝑝

𝐼𝑝𝑣𝑅𝑠

𝑅𝑝
𝑛𝑠
𝑛𝑝

 (1) 

where 

• np and ns: Number of cells connected in parallel and series; 

• Iph: Photocurrent; 

• Io: Diode saturation current; 

• Vpv and Ipv: Voltage and current at the photovoltaic panel terminals; 

• Vt: Diode terminal voltage; 

• Rp and Rs: Parallel and series resistors of the PV panel; 

• A: Diode Quality Factor. 

Equation (1) quantifies the contributions of each current component to Ipv. The 

first term represents the contribution of the chain, considering the cell association. The 

second term accounts for current loss through the anti-parallel diode, and the final term 

captures current dissipation in the parallel resistor Rp. The behavior of Iph is given in 

Equation (2) [41,42]. 

𝐼𝑝ℎ = 𝐼𝑆𝐶𝑆𝑇𝐶
{(

𝑅𝑠 + 𝑅𝑝

𝑅𝑝
) + 𝐾𝑖∆𝑇}

𝐺

𝐺𝑆𝑇𝐶
 (2) 

where: 

• ISCSTC: PV panel short-circuit current under STC (Standard Test Conditions, 1000 

W/m2 and 25 ℃); 

• Ki: Short circuit temperature coefficient; 

• ∆T: Variation of ambient temperature 2 ℃; 

• G and GSTC: Value of local irradiance and control irradiance (1000 W/m2), 

respectively. 

From Equation (2), it is evident that Iph is directly proportional to the irradiance 

incident on the PV cells. An increase in Ipu is directly linked to an increase in 

irradiance, offset by losses in the diode and conductance [43]. 

Figure 2 illustrates the I-V and P-V characteristic curves of a PV solar module 

under varying irradiance levels. In Figure 2, the short-circuit current Isc is shown to 

be proportional to irradiance, where a 90% reduction in irradiance (from 1000 W/m2 

to 100 W/m2) results in a corresponding 90% reduction in Isc [44]. 
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(a) 

 
(b) 

Figure 2. (a) I-V curves for different irradiance values; (b) P-V curves for different 

irradiance values. 

Figure 3 highlights the P-V curve, showing a unique Maximum Power Point 

(MPP) where the product of voltage and current is maximized. At this point, the slope 

of the tangent to the curve equals zero. The MPP is further defined by PMPP, IMPP. 

VMPP, where IMPP and VMPP represent the current and voltage at the MPP, 

respectively [45]. 
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Figure 3. Module with n cells, the first upper one (a) illuminated or (b) shaded. 

3. Partial shading condition—PSC 

Partial shading conditions (PSC) can arise in photovoltaic (PV) systems due to 

various factors such as neighboring buildings, vegetation, or cloud cover. These 

conditions can significantly impact the power output of PV panels. Without 

appropriate mitigation measures, even a single shaded cell can reduce the output power 

of the entire module by as much as 50% [46,47]. 

To explain the behavior of a photovoltaic module in partial shading, a module 

composed of n cells connected in series is considered, where I is the current generated 

by the module and V is the voltage between the terminals. The first cell is highlighted 

with the representation by the 5-parameter circuit model, and the other (n −1) cells 

represent a module with current I and output voltage Vn−1. 

In Figure 3a, the module is fully illuminated, allowing current I to flow through 

all cells. Conversely, in Figure 3b, the first cell is shaded, producing no current (Isc = 

0 A). The shaded cell forces current through the parallel resistor Rp, causing a voltage 

drop while maintaining the reverse bias of the anti-parallel diode. Consequently, the 

shaded cell acts as a load for the remaining cells, potentially creating hotspots due to 
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energy dissipation in Rs and Rp. These hotspots can cause permanent damage to the 

module [48]. 

To mitigate the effects of partial shading, bypass diodes are introduced in parallel 

with Rp. As depicted in Figure 4, these diodes remain reverse-biased under 

illumination, preventing conduction. However, during shading, the bypass diode 

becomes forward-biased, allowing current to bypass the shaded cell. The voltage drop 

perceived by the system is limited to the diode’s forward voltage, typically ranging 

from 0.6 V to 0.7 V. Although bypass diodes are usually installed for groups of cells 

or panels, not individually, their inclusion modifies the characteristic curves of the PV 

array, resulting in local and global maximum points on the P-V curve [49–51]. 

 

Figure 4. Inclusion of the bypass, the first upper one (a) illuminated or (b) shaded. 

MPPT algorithms are categorized based on environmental conditions: those 

designed for uniform conditions and those for non-uniform conditions. Under stable 

and uniform conditions, the PV system exhibits a characteristic P-V curve with a 

single maximum point, as shown in Figure 4a [52]. However, real-world conditions 

often involve partial shading, uneven panel orientations, and other factors, resulting in 

non-linear behavior. This is reflected in the presence of multiple maximum points on 
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the I-V and P-V curves, as illustrated in Figure 4b. Identifying the correct operating 

point, especially the global maximum, becomes challenging in such scenarios [53,54]. 

Under partial shading, the point of maximum power is classified as the Global 

Maximum Power Point (GMPP), while all other peaks are considered Local Maximum 

Power Points (LMPPs). Figure 5 demonstrates these characteristics, highlighting the 

increased complexity in identifying the GMPP for optimal system performance. 

 

Figure 5. PV V-I and V-P characteristics under partial shading. 

4. MPPT using ABC and ABC-IC 

Despite advances in MPPT algorithms for identifying global maxima, there are 

still gaps that need further study, such as, for example, their inability to identify the 

GMPP in 100% of cases. In this sense, the present work proposes the combined use of 

GMPPT algorithms, such as ABC, and MPPT, such as the Incremental Conductance 

algorithm (IC), with the aim of ensuring the identification of the GMPP in 100% of 

cases [55–59]. 

4.1. The Artificial Bee Colony (ABC) 

The Artificial Bee Colony Optimization Algorithm (ABC) is an algorithm 

designed by Karaboga based on the intelligent foraging behavior of bee colonies. ABC 

is a collective intelligence optimization algorithm inspired by the process of finding 

food for bees. The colony of bees is divided into three categories: Employed bees, 

onlookers, and scouts. According to the role of the bees, the place where the most food 

(nectar) exists (food source), that is, the global optimum is searched. Half of the colony 

consists of hired bees and the other half is made up of watch bees, and each food source 

can only have one hired bee. The simplified optimization process of ABC is as follows 

[60]. 

Step 1: Create solution vectors xi considering the number of food sources (N) and 

the number of variables (D). Initial solution vectors are generated by Equation (3). 
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𝑥𝑖𝑗 = 𝑥𝑗,𝑚𝑖𝑛 + rand[0,1](𝑥𝑗,𝑚𝑎𝑥 − 𝑥𝑗,𝑚𝑖𝑛) (3) 

At this time, xij is the location of the initial food source, 𝑖 ∈ {1,2, ⋯ , 𝑁}, 𝑗 ∈

{1,2, ⋯ , 𝐷}, rand[𝑎, 𝑏] is a random number between a and b, xj,max and xj,min are the 

maximum and minimum values of each variable. 

Step 2: Evaluate the suitability (fi) of each food item using Equation (4). 

𝑓𝑖 = {
1/(1 + 𝑓(𝑥𝑖)) if 𝑓(𝑥𝑖) ≥ 0

1 + ⌈𝑓(𝑥𝑖)⌉ if 𝑓(𝑥𝑖) < 0
} (4) 

Here, f(xi) is the value of the objective function for each food source xi. 

Step 3: Based on Equation (5), search for a new location for food sources and 

move the wages. 

𝑣𝑖𝑗 = 𝑥𝑖𝑗 + rand[−1,1]𝑖𝑗(𝑠𝑖𝑗 − 𝑥𝑘𝑗) (5) 

where vij is the location of the new food source, 𝑗 ∈ {1,2, ⋯ , 𝐷}, 𝑘 ∈ {1,2, ⋯ , 𝑁}. 

If the newly created vector vi has a better value of fi than the existing candidate 

solution xi, vi is replaced with the candidate solution instead of xi. 

Step 4: Observer bees select each food source based on the roulette wheel 

method, and the probability value depends on fi as shown in Equation (6). 

𝑝𝑖 = 𝑓𝑖 1

∑ 𝑓𝑖
𝑁
𝑖=1

 

𝑣𝑖𝑗 = 𝑥𝑖𝑗 + rand[−1,1]𝑖𝑗(𝑠𝑖𝑗 − 𝑥𝑘𝑗)𝑣 for rand [0,1] < 𝑝𝑖 (6) 

here, pi is the probability value of the i-th food source. When the observer selects the 

i-th food by Equation (6), the new food location is searched again based on the location 

of the food. 

Step 5: fi remembers the best food source to be exhausted. 

Step 6: When the value of the objective function does not improve as much as 

the limit of the number of iterations (cycle) for a certain food source, the hired bee in 

the food source is changed to a scout bee to search for a new food source, and this 

process the expression for is the same as Equation (7). 

𝑥𝑖𝑗 = 𝑥𝑗,𝑚𝑖𝑛 + rand[0,1](𝑥𝑗,𝑚𝑎𝑥 − 𝑥𝑗,𝑚𝑖𝑛) (7) 

Step 7: Return to step 3 and repeat the optimization process until the convergence 

condition is satisfied. 

Figure 6 shows the ABC MPPT algorithm. 
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Figure 6. Flowchart of the ABC technique. 

4.2. Proposed hybrid ABC-IC algorithm 

The ABC-IC hybrid algorithm integrates the Artificial Bee Colony (ABC) 

algorithm with the Incremental Conductance (IC) method to achieve an efficient and 

adaptive Maximum Power Point Tracking (MPPT) strategy. The ABC algorithm is 

responsible for identifying the Global Maximum Power Point (GMPP) by exploring 

multiple peaks in the P-V curve, particularly under partial shading conditions (PSC). 

Once the GMPP is located, the IC algorithm takes over to maintain operation at the 

optimal point by making fine adjustments in response to dynamic changes in 

irradiance and load. This transition occurs both at the beginning of the operation and 

whenever a significant change in shading conditions is detected. The combination of 

these algorithms does not significantly increase computational complexity, as ABC is 

only activated when searching for the GMPP, while IC continuously ensures local 

tracking with minimal computational overhead. This balance allows for an efficient 

trade-off between performance and complexity, ensuring robust MPPT performance 

without excessive computational burden. 
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4.3. Power structure connected to the electric grid 

Figure 7 shows the complete scheme of the single-phase grid-connected PV 

system adopted in this work. The 60 Wp PV panel is connected by the boost converter, 

which is connected to the grid by a single-phase full-wave DC-AC inverter. The PV 

system was implemented in simulation software. The implemented experimental set 

is based on the digital signal processor (DSP), where all the MPPT, PLL, grid-side 

control, and all controllers are embedded [61,62]. 

 

Figure 7. Complete scheme of the distributed generation system connected to the single-phase power grid. 

In Figure 7, the general PV system is composed of a photovoltaic arrangement 

in series with a static boost converter formed by an IGBT switch, an inductor L, a 

diode and an associated capacitor. Connected to the IGBT transistor gate is the MPPT 

strategy controller, which has voltage and current Vpv and Ipv as input data, 

respectively, and the duty cycle of the converter as output. and given by a digital signal 

resulting from PWM modulation (Pulse Width Modulation), dictating the switching 

interval of the converter. Therefore, the time intervals during which the changeover 

switch remains open and closed will dictate the transformation ratio between the input 

voltage and the output voltage and, consequently, the output power of the PV system. 

With the converter duly characterized and operating according to the desired design 

data, it is necessary to analyze which meta-heuristic allows the converter to operate in 

GMPPT for different shading conditions. 

5. Results and discussion 

This section evaluates the effectiveness and performance of the PV system shown 

in Figure 7 under static and dynamic conditions. The experimental verification 

subjected the PV modules to three levels of solar irradiation, simulating partial shading 

conditions: 

• Profile 1: The PV modules were exposed to 550 W/m2 of solar irradiation. 

• Profile 2: From 2 to 7 s, the upper part of the PV modules received 750 W/m2 of 

solar irradiation. 

• Profile 3: From 7 to 10 s, the irradiation on the upper part of the PV modules 

increased to 1000 W/m2. 
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The experimental results show that the maximum power level was achieved in 

Profile 3, where the Global Maximum Power Point (GMPP) was located at 60 W. 

Under Profile 1 and Profile 2, the maximum power was limited to 36 W. Notably, the 

Local Maximum Power Point (LMPP) remained constant at approximately 23 W 

across all profiles, as the solar irradiation on the lower PV modules remained 

unchanged. 

Figure 8 demonstrates that the MPPT-IC algorithm was constrained to the LMPP 

in all three shading profiles. This highlights the algorithm’s limited ability to adapt 

under partial shading conditions, resulting in suboptimal performance. 

 

Figure 8. Simulation results under conditions of partial shading for the IC algorithm. 

(a) MPP Voltage Variations at Different Irradiation Levels; (b) MPP Current 

Variations at Different Irradiation Levels; (c) MPP Power Variations at Different 

Irradiation Levels. 

By contrast, the proposed MPPT-ABC algorithm exhibited robust performance 

in tracking the GMPP. Figure 9 shows that the ABC algorithm maintained the 

reference duty ratio effectively, even with GMPP variations. This stability negated the 

need for the algorithm to restart random searches, ensuring the GMPP was accurately 

tracked throughout Profile 1. 
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Figure 10 provides further evidence of the superior performance of the MPPT-

ABC-IC algorithm. It adapted effectively to gradual changes in solar irradiation, 

achieving efficiency levels above 99% across all partial shading profiles. This 

highlights its suitability for real-world conditions requiring dynamic adaptability and 

robust power tracking. 

 

Figure 9. Simulation results under conditions of partial shading for ABC algorithm. 

(a) MPP Voltage Variations at Different Irradiation Levels; (b) MPP Current 

Variations at Different Irradiation Levels; (c) MPP Power Variations at Different 

Irradiation Levels. 
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Figure 10. Experimental results under conditions of partial shading for ABC-IC 

algorithm. (a) MPP Voltage Variations at Different Irradiation Levels; (b) MPP 

Current Variations at Different Irradiation Levels; (c) MPP Power Variations at 

Different Irradiation Levels. 

Table 1 summarizes the performance of the MPPT-ABC-IC, MPPT-ABC, and 

MPPT-IC methods in terms of convergence time, power oscillations, extracted power, 

and efficiency. The proposed MPPT-ABC-IC algorithm achieved a convergence time 

of 0.37 s, minimal power oscillations of 2.7%, and a perfect efficiency of 100%, 

outperforming MPPT-ABC and MPPT-IC in all metrics. 

Table 1. Summary of ABC-IC, ABC and IC performance comparison. 

MPPT Method ABC-IC ABC IC 

Convergence time (s) 0.37 0. 5 0.9 

Power oscillations (%) 2.7 1.4 8.7 

Extracted MPP in [W] 48 47.9 47.8 

Efficiency (%) 100% 99.5% 74% 
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Table 2 highlights the comparison between the proposed ABC-IC method and 

other state-of-the-art MPPT algorithms under different conditions, including uniform 

irradiance, partial shading, convergence speed, complexity, and efficiency. The 

proposed method demonstrates excellent performance across all metrics, achieving 

perfect efficiency of 100%, fast convergence, and robustness under partial shading. 

The results validate the effectiveness of the proposed MPPT-ABC-IC algorithm. 

Its ability to consistently identify and track the GMPP under partial shading conditions 

demonstrates superior static and dynamic performance. Furthermore, the comparative 

analysis in Tables 1 and 2 reinforces the method’s competitiveness, offering high 

efficiency and reliability for real-world PV systems. 

Table 2. Comparison of the proposed ABC-IC method with state-of-the-art MPPT algorithms under varying 

conditions. 

MPPT Method Uniform Irradiance Partial Shading Convergence Speed Complexity Efficiency 

OFA [61] Excellent Excellent Excellent High 100% 

FA [61] Good Moderate Moderate Moderate 99.8% 

P&O [12] Good Poor Slow Low 97.55% 

IC Excellent Moderate Moderate 
Low to 

Moderate 
74% 

IC-PI [2] Excellent Good Fast High 98.5% 

CV [6] Good Poor 
Slow to 

moderate 
Low 93.1% 

Beta [2] Excellent Excellent Fast Moderate 98.5% 

P&O-PI [2] Good Excellent Fast Moderate 98.6% 

ABC-P&O [49] Excellent Excellent Fast High 99.99% 

ABC Excellent Excellent Fast High 99.5% 

TSA-PSO 

[12] 
Excellent Excellent Fast High 98.2% 

EA-P&O [7] Excellent Excellent Very Fast High 99% 

ACO [16] Excellent Excellent Moderate High 99.85% 

ACO-P&O [16] Excellent Excellent Fast 
Moderate to 

High 
99.99% 

PC [6] Moderate Poor Slow High 99.8% 

PSO-SVR [48] Excellent Excellent Fast High 99.8% 

DEPSO [52] Excellent Excellent Moderate High 98% 

NA-PSO [53] Excellent Excellent Very Fast High 98.9% 

Vcte [2] Excellent Poor Moderate Low 89% 

IPA/VPA with PSSRA [5] Excellent Excellent Vert Fast High 98.75% 

ARL-NNA [31] Excellent Excellent Very Fast High 99.9% 

GWO_SVM_C [29] Excellent Excellent Very Fast High 97.28% 

ICA–ANN [25] Excellent Excellent Very Fast High 99.9984% 

ANN [24] Excellent Excellent Very Fast High 98.16% 

PSO_ML-FSSO [32] Excellent Excellent Very Fast High 99.594% 

Proposed ABC-IC Excellent Excellent Fast High 100% 
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6. Conclusion 

This study explored the implementation of MPPT algorithms—specifically the 

Incremental Conductance (IC), Artificial Bee Colony (ABC), and a novel hybrid 

ABC-IC approach—in PV systems under partial shading conditions. The conventional 

IC method, while straightforward, exhibited inherent limitations by tracking only the 

Local Maximum Power Point (LMPP), achieving 74% efficiency with notable power 

oscillations of 8.7%. In contrast, the ABC algorithm, grounded in metaheuristic 

optimization, effectively located the Global Maximum Power Point (GMPP), 

improving efficiency to 99.5%. The proposed hybrid ABC-IC algorithm combined the 

strengths of both the heuristic and metaheuristic approaches, achieving 100% 

efficiency with minimal oscillations (2.7%) and rapid convergence (0.37 s). This 

hybrid approach consistently tracked the GMPP even under dynamic irradiation 

changes, demonstrating robust capability in maintaining stable and efficient energy 

extraction. These results underscore the hybrid algorithm’s superior performance, 

highlighting its potential as a dependable solution for optimizing PV system output in 

the face of partial shading and environmental variability. 

Despite these significant advancements, challenges remain in the practical 

implementation of advanced MPPT algorithms in real-time PV systems. Key issues 

such as computational complexity, parameter tuning, and hardware constraints require 

further investigation to enhance the feasibility and scalability of these methods in real-

world applications. Addressing these challenges will be critical to ensuring that hybrid 

and metaheuristic algorithms can be deployed cost-effectively and efficiently without 

compromising performance. Future research should focus on developing hardware-

efficient, low-cost solutions capable of maintaining high tracking accuracy while 

minimizing resource consumption. Such innovations will be pivotal in promoting 

broader adoption of these advanced MPPT strategies, ultimately contributing to more 

reliable and efficient utilization of solar energy across diverse and changing 

environmental conditions. 
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