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Abstract: As the penetration of renewable energy in the energy system continues to rise, the 

intermittency and stochasticity of energy supply have become increasingly significant, posing 

challenges to the dynamic coordination between energy supply and demand. Building thermal 

mass, with its inherent heat capacity, offers substantial energy storage potential, presenting a 

cost-effective alternative to traditional active energy storage methods. The activation and 

precise control of flexible energy from the building's thermal mass, has become a critical area 

of research. In this paper, based on a case floor-type thermally activated building system 

(TABS), the methods and constraints of simulating the energy flexibility potential on the 

demand side of the building were analyzed. By developing model predictive control (MPC) 

strategies, including white-box MPC, grey-box MPC, and black-box MPC, this study compared 

and assessed the control performance in terms of room temperature, accumulated energy cost, 

and the utilization efficiency of energy flexibility. Compared with the traditional rule-based 

control method, the MPCs showed better performance in room-temperature control, operation 

economics, and efficiency of flexible-load utilization, effectively saving energy costs by up to 

20% and improving flexibility utilization by nearly 40%. Moreover, based on the performance 

comparison of the MPCs, white-box MPC performed optimally in terms of room-temperature 

control, while grey-box MPC was more effective in reducing energy costs and improving 

energy flexibility. The findings of this paper can provide theoretical insight for the efficient 

utilization of energy flexibility from building thermal mass and the selection of control 

methods. 

Keywords: TABS; building energy flexibility; model predictive control; thermal inertia; multi-

objective optimization 

1. Introduction 

At present, huge carbon dioxide emissions have caused serious energy and 
climate problems. To cope with the situation, countries have put forward carbon 
emission reduction measures. China put forward a dual-carbon target in 2020 and has 
been actively implementing energy upgrading and transformation in various 
industries. The building industry is one of the major areas of energy consumption and 
carbon dioxide emissions in China. In 2018 alone, the total energy consumption of 
buildings in China was 2.147 billion tons of standard coal equivalent, accounting for 
46.5% of the country’s total energy consumption. And carbon emissions from the 
building sector account for more than 50% of China’s total carbon emissions [1]. 
Therefore, improving the energy efficiency of buildings and the penetration rate of 
renewable energy in the building sector is an effective way to achieve carbon neutral 
goal. In recent years, the production of renewable energy has been increasing, but due 
to its strong randomness, volatility, and intermittency, the mismatch between supply 
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and demand has resulted in serious energy waste. Utilizing the energy flexibility 
generated by the building’s own thermal mass allows for an effective demand 
response, which is more economical and has a potentially larger scale than that of 
active energy storage. Energy flexibility in buildings is defined in IEA EBC Annex 67 
[2] as “the ability to manage demand and production according to local climatic 
conditions, user needs, and energy network requirements.” The concept of energy 
flexibility originated in the context of power systems, and its application to thermal 
systems is a more recent development. The fundamental idea remains the same: 
thermal loads, like electrical loads, can be shifted or regulated in real time, provided 
that human thermal comfort is maintained, despite the slower response times inherent 
to thermal system compared to power system. The effective utilization of flexible 
building energy can significantly mitigate the imbalance between supply and demand, 
thereby facilitating load shifting, reducing peak demand, and addressing the 
intermittent nature of renewable energy sources. Specifically, excess heat can be 
“stored” during periods of low demand and “released” during peak demand, thus not 
only alleviating peak load pressures but also meeting users' heating needs. Buildings 
hold substantial untapped potential for flexible thermal load adjustment; however, 
current demand-side management strategies face several challenges, including a lack 
of market mechanisms, policies, and technological advancements. As a result, the 
potential for establishing stable thermal loads and improving coordination within heat 
networks remains largely underutilized, limiting the broader role of thermal systems 
in integrated energy management. Therefore, investigating optimal methods for 
regulating demand-side heat flexibility is of great importance. 

Thermally activated building system (TABS) embeds energy-supply tubes 
directly in building envelope, so to provide significant flexible load potential and 
lower heat loss and CO2 emissions compared to the radiant-surface heating systems 
[3]. TABS implements load shifting, as well as peak shaving, by storing or releasing 
heat from the envelope through the adjustment of indoor temperature within the 
temperature range of thermal comfort. In addition, due to the large heat transfer area, 
the source temperature for cooling/heating can be very close to indoor set point 
temperature, making it more suitable for low-temperature heating (source temperature 
of 22–28 ℃) or high-temperature cooling. As irreversible energy losses caused by the 
temperature difference during heat transfer are much reduced, the system has high 
efficiency and provides more opportunities for renewable energy and low-grade waste 
heat as the heat source (such as shallow geothermal energy, solar energy, etc.), further 
realizing building energy efficiency and the decarbonization of energy use. The 
current control for TABS can be generally categorized into on/off control, pulse-width 
control, regular control, and gain-adjustable control [3]. Traditional control methods, 
with their simple logic, can save building energy consumption and satisfy comfort 
needs to a certain extent [4–7]. However, there is usually a large time lag in the pipe-
embedded energy supply system’s response, which can be up to several hours 
depending on the depth of the tubes and the floor’s heat capacity. Conventional on/off 
and proportional-integral (PI) control methods lack the ability to compensate for the 
thermal lag and fail to respond in a timely manner to sudden load changes in the indoor 
space [8,9]. If the thermal storage potential of the thermal mass of the envelope can be 
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fully utilized through advanced control methods, the peak demand-side load can be 
reduced by 26%–61% [10], while 44% energy savings can be achieved [4]. Model 
predictive control (MPC), which is based on a predictive and optimized control 
framework, can effectively address the effects of the thermal inertia of the pipe-
embedded energy supply system and minimize the effects of uncertain heat 
disturbance on the control accuracy. Moreover, the control sequences can be optimized 
according to specific objectives. According to previous studies, compared with 
traditional control methods, the use of MPC for HVAC systems can save energy 
consumption by up to 40–50% [11] and operating costs by up to 51% [12]. Generally, 
based on different forms of building system’s models, model predictive control can be 
divided into white-box, grey-box, and black-box MPCs. 

Currently, research on flexible energy use in buildings mostly focuses on control 
strategies with active demand response, with relatively few studies exploring passive 
flexible-load regulation utilizing a building’s intrinsic thermal mass. This type of 
regulation is affected by the thermal inertia of building envelope, which is difficult to 
be effectively addressed by traditional control methods. MPC, on the other hand, is an 
advanced optimization control method and can effectively deal with overshooting 
problems in the building’s thermal system with large thermal inertia. However, the 
application of MPC in the energy flexibility regulation of building thermal mass has 
not been sufficiently studied. In addition, most of the studies on control strategies 
focus on specific cases using a single control method, and there is a lack of side-by-
side comparison and systematic analysis of the performance of different control 
methods. In this paper, the activation and enhancing methods of flexible energy from 
building thermal mass are described. Due to the large energy flexibility potential, an 
experimental room with floor-type TABS is applied as reference. With the objectives 
of the indoor-temperature control accuracy, energy cost reduction, and efficiency of 
energy flexibility utilization, the study compared the performances of white-box, grey-
box, black-box MPCs, as well as traditional control on the case TABS supplied by 
heat pump. The conclusions of this paper can provide theoretical insight and 
methodological support for the active utilization of flexible loads on the demand side 
of buildings, as well as for the efficient synergy between the supply and demand sides 
of renewable-based energy system. 

2. Materials and methods 

2.1. Description of the case TABS system 

The case TABS system is located inside a climate chamber in Tianjin of Northern 
China. The test rig was established for the investigation of the TABS thermal behavior 
as well as the performance of the combined control strategy. An environmental 
chamber equipped with a precision air conditioning system is installed to provide 
required outdoor climate condition over temperature and humidity. The system 
enables precise regulation of the internal temperature within the range of 5 ℃ to 40 ℃, 
maintaining a fluctuation margin of ±1 ℃. The humidity control is within a range of 
10% to 90% relative humidity (RH). With a maximum airflow capacity of 2000 m3/h, 
the system is designed to meet the environmental requirements under diverse 
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operational conditions, including both summer and winter scenarios. Figure 1a shows 
the exterior appearance of the test rig. The dimension of the room is 2000 mm × 2000 
mm × 1800 mm. The building envelope is designed meeting the low-energy building 
code of the local city. A window with the size of 600 mm × 600 mm is located on the 
south wall, so to include the impact of the solar radiation. This paper focused on winter 
heating conditions, and in order to ensure the universality of the results, the weather 
data of the coldest two weeks of a typical meteorological year (TMY), which were 
from February 1 to February 14, were selected for simulation. Figure 2 shows the 
TMY outdoor temperature variation during the test period in Tianjin. The 
meteorological data were obtained from the EnergyPlus website [13]. 

 

Figure 1. (a) The test rig that consists of the case room and the climate chamber; (b) 
layout of the case room with floor-type TABS. 

 
Figure 2. Outdoor temperature of typical meteorological year of the case building 
from 1st February to 14th February. 

The indoor energy supply for the case study building is from the floor-type 
TABS, and the installation position of the embedded pipes and the arrangement of 
each material layer are shown in Figure 3, where the energy supply pipes are laid 
directly in the core layer made by concrete. The heat source of the test rig is an air-
source heat pump, which can adjust the temperature of the primary-side water supply 
on demand. The heat pump has a rated input power of 1.37 kW, a maximum power of 
1.644 kW, and a rated flow rate of 110 L/h. The heat pump is able to provide both 
heating and cooling for the test TABS. Under cooling conditions, the heat pump can 
provide an outlet water temperature ranging from 5 ℃ to 25 ℃, while under heating 
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conditions, it can supply water at temperatures up to 55 ℃, which meets the 
requirements for indoor heating and cooling purposes of radiant system. Moreover, a 
storage tank is installed between the heat pump and the TABS. The water tank not 
only serves as a reservoir for chilled or heated water but also acts as a buffer to balance 
the system's heating or cooling demands, thereby preventing significant temperature 
fluctuations that could affect the system operation. A temperature sensor is installed 
inside the tank to monitor the water temperature in real time and transmit the data to 
the heat pump controller. The controller can automatically adjust the heat output of 
the heat pump accordingly. 

 
Figure 3. Composition of floor-type TABS. 

2.2. Rule-based control method for the case TABS 

The regulation of flexible loads in a TABS mainly relies on changing the set point 
of indoor temperature. The rule-based control (RBC) method, therefore, sets fixed 
indoor-temperature control values for different periods based on the consideration of 
the indoor thermal comfort standard, occupancy, and time-sharing tariffs of local 
policies. In this study, the range of the temperature for indoor thermal comfort was 
determined from the Design Code for Heating, Ventilation and Air Conditioning of 
Civil Buildings GB 50736-2012 standard, which establishes that in winter, the indoor 
heating temperature in severe-climate and cold regions should be designed at between 
18 ℃–24 ℃, while the design indoor temperature for the radiant heating system 
should be 2 ℃ lower [14]. As the heat pump is the main heat source, the electricity 
price plays important role in the overall energy cost. The tiered electricity pricing at 
the local region is divided into the following periods: the trough period of 23:00–7:00, 
the flat periods of 7:00–8:00 and 11:00–18:00, and the peak periods of 8:00–11:00 and 
18:00–23:00, as shown in Table 1. 

Table 1. Local tiered electricity pricing. 

Period Electricity price type 

00:00–07:00 Trough period 

07:00–08:00 Flat period 

08:00–11:00 Peak period 

11:00–18:00 Flat period 

18:00–23:00 Peak period 

23:00–24:00 Trough period 
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In summary, the rule-based control strategy for the building heat supply is divided 
into the following periods. Between 0:00–8:00, when the price of electricity is 
relatively lower, which is during the trough and flat periods, the heat pump’s is 
operated to maintain the indoor temperature at 22 ℃. Between 8:00–11:00, when the 
electricity price is in the peak period, and as the residents are assumed to go to work, 
the temperature is maintained at lower boundary of the thermal comfort temperature 
range, which is 18 ℃ at the lowest. At 11:00–18:00, when the electricity price is in 
the flat period, the heat pump controller is turned on to store more heat in advance, 
thereby reducing the peak pressure during the peak period right after. The 
implementation was done in advance to preheat and maintain the indoor temperature 
at the upper limit of the indoor thermal comfort temperature of 24 ℃ in order to 
reserve energy for peak-period use. From 18:00–23:00, it is sufficient to maintain the 
indoor temperature at 20 ℃, as the electricity tariff is at its peak. Between 23:00 and 
24:00, when the electricity price is low, the heat pump is switched on to maintain the 
indoor temperature at 22 ℃. As the residents’ thermal comfort is the priority, the heat 
pump is supposed to be switched on whenever the indoor temperature falls below the 
lower limit of the thermal comfort temperature, so to avoid any discomfort for the 
occupants. 

2.3. MPC methods for the case TABS 

MPC determines the current control action by using the mathematical model of a 
system to predict and optimize the future parameter status, which mainly includes a 
system prediction model, optimization objectives, and constraints. Compared with 
RBC, model predictive control has higher flexibility and adaptability. Therefore, this 
study established white-box MPC, grey-box MPC, and black-box MPC for the thermal 
system of the case study building in order to compare the operation effects of different 
control methods. Considering energy expenditure and the effect of indoor-temperature 
control, the target equations of model predictive control in this study are as follows: 

𝐽 = 𝑚𝑖𝑛
௨భ,௨మ⋯௨ೖ

෍(𝑟(𝑞௠௔௫/𝐶𝑂𝑃௞)𝑢௞𝑝௘௟௘௖.௞) + 𝑞(𝑇௞ − 𝑇௦௘௧.௞)ଶ

ேିଵ

௧ୀଵ

 (1) 

where N is the prediction time domain, which was set to 12 h considering the thermal 

behavior of the TABS; 𝑞௠௔௫ is the maximal power of the heating pump; 𝑝௘௟௘௖,௞  is the 

price of electricity to drive the heat pump at moment k; 𝐶𝑂𝑃௞ is the COP of the heat 
pump at moment k; r and q are weight values, which were set to 50 and 1 concerning 

the different scale of temperature and power; 𝑢௞  is the control input at time k; 𝑇௞  is 

the indoor temperature at time k; and 𝑇௦௘௧,௞ is the set value of the indoor temperature 

at time k. 

2.3.1. White-box model predictive control 

White-box MPC (W-MPC) is based on detailed physical models of case studies. 
The building physical model used in this paper was based on the Modelica modeling 
language. The model’s structure and setup are similar to those of the RBC model, but 
the control of the input variable (heat supply of the case study) for W-MPC depends 
on the optimization result of the MPC objective function. A general optimization 

tool—Genopt is applied to obtain the optimal control sequence and Particle Swarm 
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Optimization (PSO) is used to solve the objective function with respect to thermal 
comfort requirements and the limitations of equipment’s heat production. The 
computed optimal control sequence is fed to the controller module of the W-MPC. 
The MPC controller module receives hourly indoor temperature data from local 
sensors and conducts rolling optimization. The flowchart of the white-box MPC is 
shown in Figure 4. 

 
Figure 4. Flowchart of white-box MPC. 

2.3.2. Grey-box model predictive control  

Grey-box MPC (G-MPC) utilizes RC analogy for the physical model 
establishment, so to describe the thermal dynamics of a building [15]. Compared to 
the white-box model, the required physical information of grey-box model is much 
simplified. According to the heat transfer process of the case study building, the logic 
of the RC model of the case study is shown in Figure 5. 

 
Figure 5. RC model of case study. 
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The heat balance equations of the case study are as follows: 

𝐶௜௡

𝑑𝑇௜௡

𝑑𝜏
=

𝑇଴ − 𝑇௜௡

𝑅଺
+

𝑇௘ − 𝑇௜௡

𝑅ସ
+

𝑇௙௟ − 𝑇௜௡

𝑅ଷ
+ 𝑄௜௡ (2) 

𝐶௙௟

𝑑𝑇௙௟

𝑑𝜏
=

𝑇௜௡ − 𝑇௙௟

𝑅ଷ
+

𝑇௣௣ − 𝑇௙௟

𝑅ଶ
+ 𝐴௪𝑃௦ (3) 

𝐶௣௣

𝑑𝑇௣௣

𝑑𝜏
=

𝑇௙௟ − 𝑇௣௣

𝑅ଶ
+

𝑇௕ − 𝑇௣௣

𝑅ଵ
+ 𝑄௛௘௔௧௜௡௚ (4) 

𝐶௘

𝑑𝑇௘

𝑑𝜏
=

𝑇௜௡ − 𝑇௘

𝑅ସ
+

𝑇଴ − 𝑇௘

𝑅ହ
+ 𝐴௘𝑃௦ (5) 

where:  
Tin—Indoor temperature, in ℃ 
Tfl—Floor surface temperature, in ℃ 
Tpp—Temperature of fluid in the embedded pipe, in ℃ 
Te—Temperature of the building envelope, in ℃ 
To—Outdoor air temperature, in ℃ 
Tb—Soil temperature, in ℃ 
Cin—Indoor heat capacity, in kJ/m2·K 
Cfl—Floor heat capacity, in kJ/m2·K 
Cpp—Heat capacity of the heat carrier medium, in kJ/m2·K 
Ce—Heat capacity of the building envelope, in kJ/m2·K 
Qin—Indoor thermal disturbance (lighting, people, facilities, etc.) in W 
Qheating—Heating system heat input, in W 
Ps—Heat gain from solar radiation, in W/m2 
Aw—Area of transparent envelope for solar radiation directly entering the indoor 

environment, in m2 
Ae—Area of opaque envelope with solar radiation, in m2 

R1—Thermal resistance of heat transfer between the embedded pipe and the soil, in 
m2·K/W 

R2—Thermal resistance of heat transfer between the embedded pipe and the floor, in 
m2·K/W 

R3—Thermal resistance between the floor and the indoor environment, in m2·K/W 
R4—Thermal resistance between the indoor environment and the inner surface of the 

enclosure structure, in m2·K/W 
R5—Thermal resistance between the outdoor environment and the outer surface of the 

enclosure structure, in m2·K/W 
R6—Radiative heat transfer thermal resistance between the indoor environment and 

the outdoor environment, in m2·K/W 
Before starting model prediction, unknown model parameters should be 

determined based on parameter identification. In this study, unknown parameters were 
estimated using CTSM-R [16] using the data during the two-week test period. The 
objective function was solved using the YALMIP toolbox [17] and the Gurobi solver 
[18]. The flowchart of the grey-box MPC is shown in Figure 6. 
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Figure 6. Flowchart of grey-box MPC. 

2.3.3. Black-box model predictive control 

Black-box MPC (B-MPC) is generally established from historical data. The Long 
Short-Term Memory (LSTM) network method, a type of neural network, was used in 
this study to train the black-box MPC model. In this case, outdoor temperature, solar 
radiation, control sequences, indoor occupancy, and historical indoor temperature data 
were collected as historical data. For each time step t, all features from t-12 to t 
(excluding indoor temperature) and indoor temperatures from t-12 to t-1 were used as 
feature sets. These features were combined into an input vector containing multi-step 
time-series features. The indoor temperature at time step t was used as the target value. 
This process would generate a feature-target pair dataset. After data cleaning and 
normalization, the dataset was divided into training and testing sets for the model in a 
ratio of 80%: 20%. The prediction model was continuously improved by reducing the 
error between the state parameters and the setpoint. After the LSTM prediction model 
was obtained, the predicted indoor temperature data would be transferred from black-
box MPC to the controller via Python, and the Genetic Algorithm was used to solve 
the objective function, so as to obtain the optimal control sequence for the regulation 
of the heat pump’s heat production. The optimal control sequence then was sent to the 
system model for the heat input regulation. The flowchart of the black-box MPC is 
shown in Figure 7. 

 
Figure 7. Flowchart of black-box MPC. 

2.4. Performance evaluation indicators 

In order to evaluate the operation performances of different control methods, 
different evaluation indexes were applied concerning the effect of room-temperature 
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control, accumulated energy cost, and efficiency of flexible energy utilization of the 
TABS. Equation (6) was used to calculate the system’s violation of indoor temperature 

constraints under different control strategies, where 𝑇௦௜௠௨௟௔௧௘(𝑡)  is the modeled 
indoor temperature. 

𝑇௩௜௢௟௔௧௘ = ෍|𝑇௦௜௠௨௟௔௧௘(𝑡) − {𝑇௠௜௡(𝑡), 𝑇௠௔௫(𝑡)}|

ே

௧ୀଵ

 (6) 

Equation (7) was used to calculate the energy spent by the system under different 

control methods, where 𝑃(𝑡) is the power rate of the heat pump and 𝑝௘௟௘௖(𝑡) is the 
electricity price at time t. 

𝐶𝑜𝑠𝑡 = ෍ 𝑃(𝑡)𝑝௘௟௘௖(𝑡)

ே

௧ୀଵ

 (7) 

Equation (8) was used to evaluate the effectiveness of energy flexibility 
utilization. The flexibility factor (FF) value ranges from –1 to 1. The best case is when 
FF = 1, which indicates that energy consumption can be shifted to the low-price period. 
On the contrary, an FF value of 0 indicates that a building’s thermal mass has limited 
ability to utilize flexible loads and cannot effectively shift thermal loads to periods of 
low energy prices. The most unfavorable case is when FF = –1, indicating that energy 
consumption occurs during high-price periods and the system lacks the ability to adjust 
its thermal loads. 

𝐹𝐹 =
∫ 𝑄௛௘௔௧௜௡௚(𝑡)

௟௢௪ ௣௥௜௖௘ ௧௜௠௘
𝑑𝑡 − ∫ 𝑄௛௘௔௧௜௡௚(𝑡)

௛௜௚௛ ௣௥௜௖௘ ௧௜௠௘
𝑑𝑡

∫ 𝑄௛௘௔௧௜௡௚(𝑡)
௟௢௪ ௣௥௜௖௘ ௧௜௠௘

𝑑𝑡 + ∫ 𝑄௛௘௔௧௜௡௚(𝑡)
௟௢௪ ௣௥௜௖௘ ௧௜௠௘

𝑑𝑡
 (8) 

3. Results and discussion 

3.1. Validation of the system models 

As the system model plays important role in developing the control strategy with 
effective and robust performance, the accuracy of white-box, grey-box and black-box 
system models of the test room were checked first. The simulated indoor temperature 
was compared with the measurements for model validation. The results are shown in 
Figure 8. 

 
Figure 8. Deviation of the simulated indoor temperatures from (a) white-box model (b) grey-box model (c) black-box 
model and the measurements.  
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The results indicate that all three system models exhibit similar trends in variation 
and closely match the measured temperature values. The calculated root mean square 
errors (RMSE) are 0.447 ℃, 0.452 ℃, and 0.460 ℃ for the white-box, grey-box, and 
black-box models, respectively. These findings confirm that the developed simulation 
models effectively capture the system's dynamic thermal behavior, making them 
suitable for the establishment and investigation of model predictive control. 

3.2. Performance of the indoor temperature control 

The performances of the developed white-box, grey-box, and black-box MPC 
strategies and RBC were simulated for the test period. Regarding the temperature 
control, the indoor temperature under MPC shows less violation to the set point 
temperature range compared to RBC. The specific results are shown in Figure 9. 

 
Figure 9. Effects of different control strategies’ indoor temperature control. (a) 
indoor temperature variation under four control strategies; (b) the normalized 
violation of the indoor temperature constraint under four control strategies.  

From Figure 9a, it can be seen that the temperature profiles of the MPCs are 
lower and closer to each other compared to RBC, which indicates that RBC is less 
efficient in controlling the indoor temperature of a building with high thermal inertia 
and is prone to overheating problems. On the contrary, the MPC strategy takes into 
account economic factors to keep the indoor temperature in a comfortable range and 
close to the lower limit of indoor temperature constraints. Regarding the violation of 
indoor temperature constraints, it can be seen from Figure 9b that the indoor 
temperature violation of the three MPC strategies is significantly lower compared to 
RBC as the baseline case for the normalized temperature. A side-by-side comparison 
of the three MPC strategies reveals that the violation of indoor temperature constraints 
is the least for white-box MPC, which reduced temperature violations by 3–34% 
compared with those of grey-box MPC and black-box MPC, respectively. 

3.2. Total energy cost under different control strategies 

As shown in Table 2, the total amount of energy consumed by the RBC strategy 
was the most significant among all the control strategies. The MPCs, on the other hand, 
due to the incorporation of multi-objective optimization, regulated the indoor 
temperature within a more reasonable range, hence avoiding overheating and reducing 
the overall heat supply. Figure 10 illustrates the normalised heating cost of the system 
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under different control strategies. Using the performance of RBC as the normalized 
baseline, it can be seen that all three MPC strategies significantly reduce the 
accumulated energy cost. Since the effect of dynamic energy prices was taken into 
account in the objective equation, the MPC strategies preferred to operate the heat 
pump during periods of low electricity prices and utilize the energy flexibility of the 
TABS when the electricity prices were high. Comparing the economics of the three 
MPCs, grey-box MPC and white-box MPC outperformed black-box MPC, with grey-
box MPC performing slightly better than white-box MPC. 

Table 2. Total energy consumption by different control methods. 

 W-MPC G-MPC B-MPC RBC 

Total energy consumption (kWh) 95.23 95.63 95.59 115.07 

 
Figure 10. Normalized energy cost of different control methods. 

3.3. Utilization efficiency of energy flexibility under different control 
strategies 

The results of the efficiency of energy flexibility utilization of the system under 
the different control strategies are shown in Figure 11. 

 
Figure 11. Normalised flexibility factor of different control methods. 

The results show that all three MPC strategies had higher efficiency of energy 
flexibility utilization compared to that of RBC. Among the three MPC strategies, G-
MPC shows the highest flexible-load utilization. Since the objective function of the 
MPCs considered energy cost and indoor comfort equally, it was difficult for the 
MPCs to completely shift the thermal loads to periods of low energy prices, and 
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therefore the flexibility utilization factors of the three MPC strategies were less than 
one. 

4. Conclusions 

This paper conducted research on the optimal control method of thermally 
activated building system, with the aim of activating and effectively utilizing the 
energy flexibility from the building thermal mass. A test rig with a floor-type TABS 
was applied as the reference case. White-box, grey-box, and black-box MPCs were 
established considering the indoor thermal comfort, accumulated energy cost, and the 
flexible energy utilization. Multidimensional evaluation of the developed control 
strategies was conducted, using the performance of RBC method as the baseline. The 
main conclusions are as follows: 
(1) The accuracy of the white-box MPC model was higher overall, but it required a 

large number of model parameters as inputs. With sufficient historical data, the 
grey-box and black-box MPC models can accurately describe the dynamic 
thermal characteristics of the TABS. 

(2) Compared with the traditional RBC method, the three MPC strategies showed 
better performance in room-temperature control, operation economics, and 
energy flexibility utilization. The prediction-based control strategies maintain 
more stable indoor temperature and effectively reduced the indoor temperature 
violations by up to 98%. By considering the dynamic price of energy and flexible-
load utilization in the target equation, the MPCs saved the energy cost by up to 
20% and improved flexibility utilization by nearly 40%. 

(3) Among the three MPCs, white-box MPC showed the optimal performance in 
room-temperature control, while grey-box MPC was more effective in reducing 
energy costs and increasing energy flexibility utilization. 
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