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Abstract: A short-term heating load forecast for buildings is a critical step in the subsequent 

control of energy systems, directly impacting system energy consumption. However, given 

that heating load and its influencing factors constitute volatile time series data, noise 

interference within the data significantly limits prediction accuracy and stability. To address 

this issue, this paper proposes a novel MVMD-SSA-LSTM model for building heating load 

forecasts, which integrates Multivariate Variational Mode Decomposition (MVMD), Sparrow 

Search Algorithm (SSA), and Long Short-Term Memory (LSTM) neural networks. Initially, 

a correlation analysis of the factors influencing building heating load is conducted to identify 

the key determinants. Subsequently, MVMD is employed to decompose the multidimensional 

dataset into several modes. A correlation analysis is then performed on these decomposed 

modes to extract supplementary features, which are combined with the original data to form a 

new dataset, thereby reducing feature redundancy. Finally, an LSTM neural network is 

utilized as the core predictive model, with the SSA algorithm optimizing three critical 

parameters: The maximum training iterations, the number of hidden units, and the initial 

learning rate. The predicted outputs of each heating load mode are aggregated to obtain the 

final forecast. Results demonstrate that the MVMD-SSA-LSTM model effectively mitigates 

the uncertainty in heating load sequence forecasts, overcoming noise disturbances and 

exhibiting superior performance compared to other commonly used models, with 

significantly higher accuracy and stability. 

Keywords: building heating load forecast; multivariate variational mode decomposition; 

long short-term memory neural networks; sparrow search algorithm 

1. Introduction 

Building load forecasting is a critical foundation for the regulation and control 

of central air conditioning systems, with forecasting results at varying temporal 

granularities playing distinct roles in system planning. Based on the forecasting 

horizon, building load predictions can be broadly classified into short-term (1 h to 1 

week), medium-term (1 week to several weeks), and long-term (several months to 

years) [1]. Building energy systems inherently exhibit significant thermal inertia due 

to the accumulation and release of heat, which introduces substantial time delays in 

system responses to load changes. This time lag is particularly pronounced in winter 

compared to summer [2–4]. Therefore, it is necessary to regulate in advance to 

ensure the efficiency and stability of operation. High-precision short-term heating 

load forecasting is instrumental in optimizing control parameters for various 

components within energy systems, playing a crucial role in ensuring stable and 

energy-efficient operation. Specifically, short-term load forecasting results can 
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provide essential data support for daily system startup and shutdown schedules, as 

well as for the formulation of control strategies for various units. The accuracy of 

building load forecasts directly influences the actual energy consumption of the 

system and impacts occupant comfort [5,6]. In addition, real-time building heating 

load data cannot be readily obtained solely from current environmental 

measurements, making accurate forecasting a vital approach for addressing this 

challenge effectively. 

In recent years, deep learning has emerged as the most widely utilized and 

rapidly advancing approach for addressing building load forecasting problems in 

both domestic and international research [7–9]. For instance, Pan et al. [10] applied a 

Back Propagation Neural Network (BPNN) to predict building energy loads, while 

Yildiz et al. [11] employed Support Vector Regression (SVR) for building energy 

consumption forecasting. Additionally, Wang et al. [12] leveraged Long Short-Term 

Memory (LSTM) networks to predict heating loads in buildings. Given the unique 

architecture of LSTM models, they have shown exceptional performance in short-

term forecasting of heating and cooling loads for buildings. For example, Zhou et al. 

[13,14] developed an air-conditioning system load forecasting model for a public 

building using LSTM on an hourly basis and compared the results with other deep 

learning algorithms, such as Autoregressive Moving Average (ARMA) models and 

BPNN. The findings demonstrated that the LSTM model produced more accurate 

predictions. Furthermore, Chalapathy et al. [15] applied the LSTM neural network 

model to the prediction of cooling loads, with experimental results consistently 

outperforming those of the SVR algorithm. These studies indicate that LSTM is 

widely recognized as an effective model for such applications. Leveraging historical 

data, deep learning methods can effectively uncover the hidden coupling 

relationships among input parameters and capture temporal correlations, thereby 

accurately reflecting power fluctuation characteristics. Compared to traditional 

physical models, deep learning not only saves computational resources but also 

yields superior prediction accuracy [16–18]. 

Moreover, the parameters of neural networks are typically determined based on 

empirical computation. In recent years, numerous swarm intelligence algorithms 

have been developed and applied to optimize key parameters of LSTM networks, 

aiming to enhance prediction accuracy. The optimization principle of swarm 

intelligence algorithms often draws inspiration from bionics, simulating the 

behavioral characteristics of social animal groups to search for optimal solutions. 

Among these algorithms, the Sparrow Search Algorithm (SSA), introduced by Xue 

et al. [19] in 2020, has demonstrated remarkable performance in multi-dimensional 

parameter optimization problems. Compared to other algorithms such as Particle 

Swarm Optimization (PSO) and genetic algorithms, SSA features fewer control 

parameters, higher efficiency, a simpler structure, and stronger global search 

capability [20,21]. SSA-LSTM prediction models have been successfully employed 

across various research domains. For instance, Jiedeerbieke et al. [22] utilized SSA 

for predicting deformation in concrete dams, Huang et al. [23] applied it to short-

term photovoltaic power forecasting, and Gao et al. [24] adopted the model for short-

term wind power prediction. In a study by Han et al. [25], PSO and SSA were used 

to optimize BP, LSTM, and RNN networks for electric load forecasting, 
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demonstrating that SSA outperformed other algorithms in terms of solving speed, 

stability, and convergence accuracy. LSTM networks are highly effective in 

addressing various building load prediction tasks. When employing SSA to optimize 

LSTM hyperparameters, the objective function of SSA is defined as the prediction 

error of an untrained LSTM model on training data. SSA refines the hyperparameters 

through an iterative search process until the parameters meet the configuration 

requirements or convergence criteria. 

1 1
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            (1) 

Despite the notable predictive performance of neural networks, practical 

applications reveal that predictions from a single neural network model often exhibit 

variability, characterized by significant differences in accuracy across experimental 

trials. This uncertainty primarily arises from factors such as random initialization 

during training, variations in gradient descent paths, and the influence of random 

noise in the training samples. These observations suggest that single neural networks 

are particularly sensitive to input noise, which exacerbates prediction uncertainty to 

some extent [26,27]. 

Furthermore, based on the calculation formula for building heating load, as 

presented in Equation (1), the primary factors influencing building heating load 

include indoor and outdoor temperatures, envelope structures, wind speed, wind 

direction, and solar radiation. However, external humidity indirectly increases the 

heating load demand by introducing latent heating requirements, and occupants 

contribute to both sensible and latent heat gains. Additional random factors, such as 

equipment usage patterns, occupant movements, and transient changes in material 

properties, also contribute to stochastic noise in heating load data [28,29]. 

To mitigate the impact of noise and improve the accuracy of predictive models, 

it is essential to account for the volatility and time-series nature of building load data 

and its influencing factors. Signal decomposition methods are effective in reducing 

noise interference in building load data. By applying modal decomposition 

techniques, feature data can be finely decomposed into Z components. These 

components are then analyzed to extract key features for prediction, leading to 

enhanced model accuracy. This approach has been shown to effectively reduce noise 

and improve the precision of load forecasting models [30,31]. 

Traditional approaches to decomposing predictive data commonly employ 

algorithms such as wavelet transform (WT), empirical mode decomposition (EMD), 

and variational mode decomposition (VMD). WT is known for its excellent time-

frequency localization properties; however, its denoising performance diminishes 

when applied to signals with high noise levels. As a result, WT is often less effective 

for multidimensional data influenced by multiple factors, where substantial noise is 

inherently present in the data [32,33]. In contrast, EMD requires minimal prior 

knowledge and parameter settings, making it a straightforward technique to 

decompose signals into intrinsic mode functions (IMFs). However, EMD is highly 

sensitive to noise, with minor perturbations in the signal potentially causing 

significant inaccuracies in the decomposition results [34]. Furthermore, the lack of a 
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well-defined mathematical framework in EMD increases the likelihood of mode 

mixing, particularly when dealing with complex signals. 

VMD, introduced by Dragomiretskiy et al. [35] in 2014, is an adaptive, non-

iterative signal processing method designed to address mode mixing issues. By 

optimizing the center frequency and bandwidth of each mode, VMD ensures non-

overlapping frequency components across modes, leading to clearer and more stable 

decomposition results [36,37]. The robust mathematical foundation of VMD further 

enhances its reliability in signal decomposition tasks. Despite these advantages, 

applying VMD to prediction problems with multiple influencing factors often 

necessitates separate decomposition of data from individual channels. This process 

can overlook the coupling relationships between heating load and other variables in 

the time and frequency domains. Additionally, separate decomposition may result in 

frequency mismatch across sub-modes derived from different channels. 

Consequently, VMD in its standard form is less suited for handling multichannel data 

that includes heating load and their influencing factors. To address these limitations, 

VMD requires enhancement to support multichannel data processing, leading to the 

development of Multivariate Variational Mode Decomposition (MVMD), which 

offers a more comprehensive solution for multichannel signal analysis. 

In order to address the above problem of heating load forecasting with the 

coupled influence of multiple factors and the accompanying noise interference, this 

paper proposes a combined MVMD-SSA-LSTM short-term heating load forecasting 

model for buildings, which firstly uses MVMD to modal decompose the 

multidimensional dataset, conducts correlation analysis, constitutes a new dataset 

with the original data, and then uses the SSA optimization algorithm combined with 

the LSTM neural network to make a forecasting, and compared with other 

commonly used basic forecasting models, according to the simulation results, the 

forecasting accuracy of this hybrid model proposed in this paper is better than other 

comparison models. 

2. MVMD-SSA-LSTM model for short-term building heating load 

forecasting 

In the present investigation, a Multivariate Variational Mode Decomposition 

(MVMD) technique is combined with a Long Short-Term Memory (LSTM) neural 

network to develop a model for short-term building heating load forecasting. 

Additionally, the Sparrow Search Algorithm (SSA) is incorporated to optimize the 

forecasting process. The framework of the proposed model is presented in Figure 1. 
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Figure 1. Forecasting structure of the MVMD-SSA-LSTM model. 

2.1. Multivariate variational mode decomposition (MVMD) 

To effectively extract data features and reduce the instability of time-series data, 

this section proposes a Multivariate Variational Mode Decomposition (MVMD) 

framework model based on the VMD algorithm. The framework is designed to 

decompose building load data and its influencing factors. Its principle involves 

decomposing a complex signal into sub-signals with fixed bandwidths, referred to as 

intrinsic mode functions (IMFs) [38]. Additionally, to identify features with strong 

correlations to the load data, each IMF is subjected to Pearson correlation analysis to 

compute the correlation coefficients of the decomposed components. This step 

minimizes feature redundancy, enabling the extraction of input features for load 

prediction. The features selected through modal decomposition, combined with the 

original influencing factors, are used as inputs for load prediction. As a generalized 

extension of the original VMD algorithm, MVMD processes input data containing C 
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data channels, which can be denoted by x(t) = [x1(t), x2(t), …, xC(t)], and further 

decomposes them into Z predefined multivariate modulated oscillations u𝑧(𝑡). 

x(𝑡) = ∑ u𝑧

𝑍

𝑧=1

(𝑡)𝑎 (2) 

where, u𝑧(𝑡) = [u1(t), u2(t), . . . u𝐶(t)]. 

From Equation (2), the multivariate modulated oscillation set {u𝑧(𝑡)}𝑧=1
𝑍  is 

obtained. The Hilbert transform is applied to each component of u𝑧(𝑡), resulting in 

the vector analytic signal u+
𝑧 (𝑡) . For the multivariate modulated oscillation, the 

model assumes a common component 𝜔z exists across all data channels. To ensure 

that the frequency components of each modal function are concentrated around the 

predetermined center frequency 𝜔z, harmonic mixing is performed by multiplying 

with a complex exponential z
j t

e
−

 based on the Fourier transform principle. The 

bandwidth of the multivariate oscillation is then calculated using the Frobenius norm 

of the resulting matrix, as expressed in Equation (3): 

𝑓 = ∑ ∑‖∂𝑡[𝑢+
𝑧,𝑐(𝑡)𝑒−𝑗𝜔𝑧𝑡]‖

2

2

𝑐𝑧

 (3) 

where, 𝑢+
𝑧,𝑐(𝑡) represents the analytic signal vector corresponding to the c-th channel 

and the z-th mode. 

The constraints of MVMD are as follows: The total bandwidth of all modes is 

minimized; the decomposed modes can accurately reconstruct the original data 

signal. The constrained optimization problem can be expressed as shown in Equation 

(4): 

minimize
{𝑢𝑧,𝑐},{𝜔𝑧}

{∑ ∑‖∂𝑡[𝑢+
𝑧,𝑐(𝑡)𝑒−𝑗𝜔𝑧𝑡]‖

2

2

𝑐𝑧

} subject to ∑ 𝑢𝑧,𝑐

𝑧

(𝑡) = 𝑥𝑐(𝑡), 𝑐 = 1,2, … , 𝐶 (4) 

For the aforementioned multiple linear equality constraints, to facilitate solving, 

the original optimization problem is reformulated into an unconstrained problem by 

augmenting the Lagrangian function based on the number of channels. This 

reformulation simplifies the solution process, with the augmented Lagrangian 

function expressed in Equation (5): 

( )
2
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(5) 

For the resulting unconstrained optimization problem, the alternate direction 

method of multipliers (ADMM) is employed to update both the modes and the center 

frequencies. Mode updating involves iteratively refining the modal functions in each 

step, as shown in Equation (6): 

�̂�𝑧,𝑐
𝑧+1(𝜔) =

𝑥𝑐(𝜔) − ∑ �̂�𝑖,𝑐(𝜔) +
�̂�𝑐(𝜔)

2𝑖≠𝑧

1 + 2𝛼(𝜔 − 𝜔𝑧)2
 

(6) 

The center frequency update adjusts the frequency characteristics of the modal 

functions to better adapt to the frequency-domain features of the original signal, 
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thereby improving the accuracy of decomposition. The function for updating center 

frequencies is provided in Equation (7): 

𝜔𝑧
𝑛+1 =

∑ ∫ 𝜔
∞

0𝑐 |�̂�𝑧,𝑐(𝜔)|2𝑑𝜔

∑ ∫ |
∞

0𝑐 �̂�𝑧,𝑐(𝜔)|2𝑑𝜔
 (7) 

Following the aforementioned operational steps, the data for each factor (data 

from C channels) can be decomposed into Z modes (Z IMFs). The modal frequency 

scales within the same layer are identical across all channels, ensuring frequency 

consistency between different channels. 

To enhance the predictive accuracy of the model, the decomposed modes are 

subjected to Pearson correlation coefficient analysis. This analysis identifies the 

mode with the highest correlation coefficient for each channel (temperature, 

humidity, solar radiation, etc.) as a supplementary feature for heating load prediction 

inputs. The formula for calculating the Pearson correlation coefficient (PCC) [39,40] 

is provided in Equation (8): 

𝛾𝑋,𝑌 =
∑ (𝑛

𝑖=1 𝑋𝑖 − �̄�)(𝑌𝑖 − �̄�)

√∑ (𝑛
𝑖=1 𝑋𝑖 − �̄�)2 ∑ (𝑛

𝑖=1 𝑌𝑖 − �̄�)2

 
(8) 

where vectors X  and Y  represent the mean values of vectors 𝑋 and 𝑌, respectively. 

The Pearson correlation coefficient is a method used to measure the linear 

correlation between two variables, X  and Y , with a range of [−1, 1]. When the 

value approaches 1 or −1, the correlation between X  and Y  becomes stronger. 

Conversely, when the value approaches 0, the correlation between the two variables 

becomes weaker. 

2.2. Long short-term memory neural network (LSTM) 

Building heating load prediction refers to forecasting the heating demand 

required by a system at a future time during the building’s operational phase. This 

prediction facilitates optimizing the control of air conditioning systems by 

determining optimal setpoints or operational conditions, thereby enabling the 

formulation of the best operation strategies for air conditioning systems. The LSTM 

neural network demonstrates exceptional performance in handling time-series data; it 

consists of an input layer, a hidden layer, and an output layer. The hidden layer is 

composed of specialized LSTM units, each of which includes an independent 

memory cell and three gates—input gate, output gate, and forget gate. Each gate is 

equipped with its own weights and biases, which collectively determine the storage 

and flow of information. 

Compared to other commonly used neural networks, the unique architecture of 

LSTM overcomes the gradient vanishing and explosion issues often observed during 

the training of traditional RNNs and other single neural networks [41]. It also 

enables long-term information retention, making it particularly well-suited for time-

series data prediction. 

The internal mechanism of LSTM is illustrated in Figure 2. 
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Figure 2. Internal mechanism of the LSTM model. 

Where ht represents the hidden state at time step t, capturing the contextual 

representation of the current moment influenced by the global information from time 

steps 0 to t. xt denotes the input vector at time step t, while Ct represents the memory 

at time step t, which essentially encodes the global information from time steps 0 to 

t. Based on the input xt and the hidden state information ht−1 from the previous time 

step, three gating mechanisms and a candidate memory are generated: The forget 

gate 𝑓𝑡, input gate 𝑖𝑡, output gate 𝑜𝑡, and candidate memory �̃�𝑡. 

The forget gate determines how much of the cell state from the previous time 

step should be retained in the current cell state, effectively deciding which 

information to discard from the cell state. The calculation formula is shown in 

Equation (9): 

𝑓𝑡 = 𝜎(𝑊𝑓 × [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓) (9) 

In this context, 𝜎  represents the sigmoid activation function, Wf denotes the 

weight matrix of the forget gate, and bf is the bias term associated with the forget 

gate. This gate processes ht−1 and xt, passing them through the sigmoid layer to 

produce an output 𝑓𝑡 , which is a value between 0 and 1. The output 
t

f  is then 

multiplied element-wise with each value in the cell state Ct−1. A value of 0 for 𝑓𝑡 

indicates complete forgetting, while a value of 1 signifies full retention. 

The input gate determines the proportion of the current input to be retained in 

the cell state at the current time step. It consists of two components: The sigmoid 

layer, which decides which values to update, and the tanh layer, which generates the 

information to be added to the cell state. The tanh layer creates a new cell state 

vector, �̃�𝑡, which is incorporated into the state, as shown in Equations (10) and (11): 

𝑖𝑡 = 𝜎(𝑊𝑖 × [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖) (10) 

�̃�𝑡 = 𝑡𝑎𝑛ℎ( 𝑊𝐶 × [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝐶) (11) 

In these equations, Wi and WC represent the weight matrices of the input gate 

and memory module, respectively, while bi and bC are their corresponding bias terms. 

The cell state Ct−1 is updated to Ct by multiplying the old state with ft, thereby 

discarding the designated information, and then adding 
t

i *Ct, where “*” represents 

element-wise multiplication. This process completes the cell state update, as 

described in Equation (12): 
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𝐶𝑡 = 𝑓𝑡*𝐶𝑡−1 + 𝑖𝑡*�̃�𝑡 (12) 

The output gate determines which portion of the cell state will be output 

through a sigmoid layer. The cell state is processed by a tanh function, yielding 

values within the range of −1 to 1, which are then multiplied with the output of the 

sigmoid gate. This operation ensures that only the designated portion of the state is 

output. The computations are described in Equations (13) and (14): 

𝑜𝑡 = 𝜎(𝑊𝑜[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜) (13) 

ℎ𝑡 = 𝑜𝑡* 𝑡𝑎𝑛ℎ( 𝐶𝑡) (14) 

where Wo represents the weight matrix of the output gate, and bo denotes the bias 

term associated with the output gate. 

2.3. Parameter optimization of Sparrow Search Algorithm 

The Sparrow Search Algorithm (SSA) mimics the foraging behavior of 

sparrows. This optimization algorithm is based on a discoverer-follower model, 

augmented by a scouting and early-warning mechanism. In this model, the sparrow 

individual that first locates food acts as the discoverer, while the others are 

designated as followers. Additionally, a certain proportion of individuals are selected 

to act as scouts for early warning. If danger is detected, the food is abandoned [42]. 

The position matrix of sparrows is represented in Equation (15): 

𝑋 = [

𝑥1,1 𝑥1,2 . . . 𝑥1,𝑑

𝑥2,1 𝑥2,2 . . . 𝑥2,𝑑

⋮ ⋮ ⋮ ⋮
𝑥𝑛,1 𝑥𝑛,2 . . . 𝑥𝑛,𝑑

] (15) 

where n represents the number of sparrows, and d denotes the dimension of the 

variables in the optimization problem. The fitness values of all sparrows are 

computed using Equation (16): 

1,1 1,2 1,

2,1 2,2 2,

,1 ,2 ,

([ ... ])

([ ... ])

([ ... ])

d

d

X

n n n d

f x x x

f x x x

F

f x x x

=

 
 
 
 
 
 
    

(16) 

During each iteration, the position update for discoverers can be described by 

Equation (17): 

𝑋𝑖,𝑗
𝑡+1 = {

𝑋𝑖,𝑗
𝑡 𝑒𝑥𝑝[ − 𝑖/𝑎𝑖termax] 𝑅2 < 𝑆𝑇

𝑋𝑖,𝑗
𝑡 + 𝑄𝐿 𝑅2 ⩾ 𝑆𝑇

 (17) 

where t is the current iteration number, j = 1, 2, …, d. itermax is the maximum number 

of iterations (a constant); 𝑋𝑖,𝑗
𝑡  represents the position information of the i-th sparrow 

in the j-th dimension; α ∈ [0, 1] is a random number; R2 ∈ [0, 1] indicates the 
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alertness value; ST ∈ [0.5, 1] represents the safety threshold; Q is a random number 

following a normal distribution; and L is a 1 × d matrix with all elements equal to 1. 

The position updates for joiners can be described by Equation (18): 

𝑋𝑖,𝑗
𝑡+1 = {

𝑄 𝑒𝑥𝑝[ (𝑋worst
𝑡 − 𝑋𝑖,𝑗

𝑡 )/𝑖2] 𝑖 > 𝑛/2

𝑋𝑝
𝑡+1 + |𝑋𝑖,𝑗

𝑡 − 𝑋𝑝
𝑡+1|𝐴+𝐿 otherwise

 (18) 

𝐴+ = 𝐴𝑇(𝐴𝐴𝑇)−1 (19) 

The term “exp” represents the current globally optimal position of the 

discoverer, while 𝑋worst
𝑡  denotes the globally worst position. A is a 1 × d matrix, with 

each element randomly assigned a value of either 1 or −1. When i > n/2, it indicates 

that the i-th joiner has a relatively low fitness value and has failed to obtain food, 

signifying a state of hunger and necessitating foraging in other locations. 

A subset of sparrows capable of detecting danger, referred to as sentinels, is 

introduced. These sparrows are initially placed at random positions within the 

population. When encountering threats, sentinels quickly relocate to safe areas. The 

position update for a sentinel, 𝑋𝑖,𝑗
𝑡+1, is described by Equation (20): 

𝑋𝑖,𝑗
𝑡+1 = {

𝑋best
𝑡 + 𝛽 ∣ 𝑋𝑖,𝑗

𝑡 − 𝑋best
𝑡 ∣ 𝑓𝑖 > 𝑓𝑔

𝑋𝑖,𝑗
𝑡 + 𝐾 (

∣ 𝑋𝑖,𝑗
𝑡 − 𝑋worst

𝑡 ∣

(𝑓𝑖 − 𝑓𝑤) + 𝜀
) 𝑓𝑖 = 𝑓𝑔

 (20) 

where 𝑋best
𝑡  represents the current globally optimal position, β is the step-size control 

parameter following a normal distribution with a mean of 0 and variance of 1, and K 

∈ [−1, 1] is a random number. Additionally, fi denotes the fitness value of the iii-th 

sparrow, fw is the globally worst fitness value, fg is the globally best fitness value, and 

ε is a small constant to prevent division by zero. 

Based on the above mathematical model, the flowchart of SSA optimizing 

LSTM parameters is shown in Figure 3. The fundamental operational steps can be 

summarized as follows: 

1) Initialize the population, iteration count, and other parameters; 

2) Rank the fitness values and identify the individuals with the best and worst 

fitness in the current iteration; 

3) Update the positions of discoverers, followers, and randomly selected sparrows 

(those acting as sentinels);  

4) Transmit parameters to the LSTM model and configure the LSTM neural 

network structure and training parameters based on the updated parameter set; 

5) Calculate the fitness values based on the feedback from LSTM training results; 

6) Define the best fitness value, update the position if the new position 

outperforms the previous one; 

7) Repeat steps 3–6; 

8) Output the optimal fitness value and the corresponding sparrow individual. 
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Figure 3. Forecasting workflow. 

3. Evaluation indicators 

To assess the forecasting accuracy of the models, four evaluation metrics were 

utilized: Root mean square error (RMSE), coefficient of determination (R2), mean 

absolute error (MAE), and variance (VAR). RMSE and MAE reflect the deviation 

between predicted and actual values, with smaller values indicating better predictive 

performance. The R2 value evaluates the goodness-of-fit, with values closer to 1 

representing higher fitting accuracy. VAR assesses the stability of the forecasting 

model, where smaller values indicate greater model stability. The calculation 

formulas for these four metrics are shown in Equations (21)–(24): 

𝑋RMSE = √
1

𝑛test
∑(𝑌test − �̂�test)

2

𝑛test

𝑖=1

 (21) 

𝑋MAE = (
1

𝑛test
∑|𝑌test − �̂�test|

𝑛test

𝑖=1

) (22) 

𝑅2 = 1 −
∑ (𝑌test − �̂�test)

2𝑛test
𝑖=1

∑ (𝑌test − �̄�)2𝑛test
𝑖=1

 (23) 

𝑋VAR =
1

𝑛test
∑(𝑌test − �̂�test − 𝜇)

𝑛test

𝑖=1

 (24) 
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In the equations, 𝑌test  represents the actual measured values of the building 

heating load in the test set, �̂�test denotes the predicted values of heating load by the 

model, �̄�  is the sample mean calculated from the actual measured heating load 

values, 𝜇  refers to the sample mean of the prediction error sequence, and 𝑛test 

indicates the number of samples in the test set. 

4. Case simulation and analysis 

4.1. Engineering overview 

This study focuses on the energy system of an office building located in 

Shenyang, China. The building has an effective heating area of approximately 80,000 

square meters during the winter season. The air-conditioning system operates daily 

from 7:00 to 19:00, with data recorded at 1-hour intervals. Environmental data and 

heating load data from the heating seasons (November to March of the following 

year) in 2021 and 2022 are used as the prediction dataset. The dataset is divided into 

a training set and a testing set in a 7:3 ratio. 

4.2. Correlation analysis of influencing factors 

As mentioned in the introduction, building heating loads are influenced by 

multiple coupled factors, such as the building envelope, outdoor temperature, 

outdoor relative humidity, solar radiation, room occupancy rate, wind speed, and 

wind direction. Among these, the building envelope is determined during the design 

phase and can therefore be treated as a fixed parameter for existing buildings. 

Although it may undergo slight variations due to environmental changes, these 

variations are challenging to capture and can be considered a form of noise 

interference. 

The degree of influence of various factors on building heating load varies. 

When a factor has a low impact, incorporating it into the prediction model may 

reduce prediction accuracy and increase model complexity. Therefore, Pearson 

correlation coefficients (r) were initially employed to assess the relationships 

between influencing factors and heating load. The correlation results are shown in 

Figure 4. 
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Figure 4. Pearson correlation coefficients of influencing factors. 
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To reduce subsequent computational complexity while ensuring prediction 

accuracy, it is necessary to select influencing factors with a certain degree of 

correlation. Additionally, the original factors associated with strongly correlated 

modes after modal decomposition should be retained as much as possible. According 

to the Pearson correlation coefficient strength table [43], it is shown in Table 1 that 

two weakly correlated factors—wind direction and wind speed (0.1 ≤ ∣r∣ < 0.3)—

were excluded to prevent feature redundancy from adversely affecting the prediction 

results. 

Table 1. Strength levels of pearson correlation coefficients. 

r Value Correlation Strength 

0.1 ≤ |r| < 0.3 Weak correlation 

0.3 ≤ |r| < 0.5 Moderate correlation 

0.5 ≤ |r| < 0.7 Fairly strong correlation 

0.7 ≤ |r| < 0.9 Strong correlation 

0.9 ≤ |r|≤ 1 Very strong correlation 

The correlation coefficient analysis reveals that, although wind direction and 

wind speed theoretically influence building loads to some extent, their effects are 

largely diminished when the building has good airtightness and insulation. This is 

particularly evident under conditions where low temperatures coincide with low 

wind speeds and high temperatures with high wind speeds, resulting in the impact of 

temperature and other coupled factors on building loads overshadowing the influence 

of wind direction and wind speed. Consequently, four factors with higher 

correlations were selected based on the prescribed criteria: Outdoor temperature, 

outdoor relative humidity, solar radiation, and room occupancy rate. 

4.3. MVMD parameter configuration and results 

To further extract complementary features for prediction, MVMD 

decomposition was performed on the four selected influencing factors and heating 

load data identified in the previous section. 

4.3.1. MVMD parameter configuration 

After decomposition, the original data exhibits greater regularity. The parameter 

settings for MVMD are presented in Table 2. 

Table 2. Main parameter settings of MVMD. 

Penalty facto (alpha) Noise tolerance (tau) Initialization mode (init) Convergence value (tol) Number of modes (Z) 

2500 0 1 1 × 10−7 2–10 

In Table 2, the penalty factor controls the smoothness of the modal 

decomposition, with higher values leading to smoother modes. The noise tolerance 

allows for a certain level of noise, where a value of 0 indicates no strict fidelity 

requirement. For initialization mode selection, a value of 1 represents uniform 

initialization. The convergence value determines the stopping criterion for the 
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iteration process, halting when the change falls below this value. The number of 

modes specifies the number of sub-signals into which the signal is decomposed. 

4.3.2. Determination of MVMD decomposition layers 

MVMD effectively captures signal characteristics; however, an inappropriate 

number of decomposed modes, whether too many or too few, can adversely affect 

prediction outcomes. When the number of modes is too small, there is a risk of 

information loss, and critical frequency components and signal features may not be 

adequately captured. Conversely, an excessive number of modes can capture noise 

and random fluctuations within the data, reducing the model’s generalization ability 

and leading to poor performance on new datasets. Additionally, higher mode counts 

increase computational complexity, potentially diminishing prediction accuracy. 

To determine the optimal number of decomposition modes for the MVMD 

model, the mode count was empirically set between 2 and 10. Simulations were 

conducted sequentially with different step sizes to evaluate performance. 

Figure 5 illustrates the errors of the MVMD-LSTM prediction model under 

varying numbers of decomposition modes for step sizes of 1, 2, and 3. As shown in 

the figure, when the number of decomposition modes is set to 8, all four error 

metrics reach their minimum values, indicating the highest prediction accuracy, best 

performance, and optimal model stability. Additionally, all four error metrics 

increase as the step size grows. Therefore, in the subsequent model analysis, the 

number of decomposition modes for MVMD is uniformly set to 8. 
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Figure 5. Forecasting errors under different step sizes and decomposition levels, (a) RMSE error comparison; (b) 

MAE error comparison; (c) R2 error comparison; (d) VAR error comparison. 
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4.3.3. MVMD decomposition results 

The decomposition results based on the mode number determined in the 

previous section are presented in Figure 6. 
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Figure 6. Modal decomposition results of heat load influencing factors, (a) modal decomposition of temperature; (b) 

modal decomposition of relative humidity; (c) modal decomposition of solar radiation; (d) modal decomposition of 

room occupancy rate. 

The Pearson correlation coefficients between each mode obtained from the 

decomposition of the four influencing factors and the original heating load data are 

presented in Table 3. 
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Table 3. Pearson correlation coefficients between each mode and heating load. 

Mode Temperature Relative humidity Solar radiation Room occupancy rate 

1 0.8316 0.6630 0.4168 0.01224 

2 0.3437 0.6300 0.7913 0.4069 

3 0.4919 0.5122 0.2087 0.7597 

4 0.1136 0.3428 0.2164 0.7596 

5 0.0751 0.2348 0.1863 0.2805 

6 0.0581 0.1736 0.1750 0.3079 

7 0.0396 0.0670 0.1742 0.2490 

8 0.0504 0.0554 0.188 0.1412 

To select modes with stronger regularity as supplementary features to the 

original influencing factors for heating load prediction, the mode with the highest 

correlation coefficient for each influencing factor is identified and combined with the 

original factors as input data for prediction. Based on the results in Table 3, the 

following modes are selected: The first sub-mode for temperature, the first sub-mode 

for relative humidity, the second sub-mode for solar radiation, and the third sub-

mode for room occupancy rate. 

Each mode of the decomposed load data is used as a separate output for 

prediction. The decomposition results are illustrated in Figure 7, where each of the k 

modes is sequentially treated as an output. Finally, the predicted outputs are 

aggregated to reconstruct the original form of the data, enabling subsequent error 

analysis. 
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Figure 7. Heating load modal decomposition results. 

4.4. LSTM network architecture and parameter configuration 

The structure of the Long Short-Term Memory (LSTM) neural network 

comprises an input layer (which accepts time-series data as input), an LSTM layer 
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with 60 hidden units (to process sequential input data and capture long- and short-

term dependencies), a ReLU activation layer (to introduce non-linearity and enhance 

the network’s representational power), a fully connected layer, and a regression layer 

(to compute the loss and guide network training and optimization). 

The training process utilizes the Adam optimization algorithm with a maximum 

of 200 training epochs, a batch size of 15 for each iteration, and an initial learning 

rate of 0.02. The learning rate is adaptively adjusted during training to enhance 

performance. These configurations enable the LSTM network to effectively capture 

the intricate characteristics of time-series data and produce accurate predictions. 

Additional parameters are configured as shown in Table 4. 

Table 4. Main parameter settings of the LSTM neural network. 

Maximum 

Training Epochs 
Batch Size 

Gradient 

Threshold 

Initial Learning 

Rate 

Learning Rate 

Decay Period 

Learning Rate 

Decay Factor 

Regularization 

Parameter 

Training 

Environment 

200 15 0.15 0.02 60 0.25 1 × 10−6 CPU 

4.5. SSA parameter configuration and optimization results 

The Sparrow Search Algorithm (SSA) was employed to optimize the LSTM 

parameters, significantly enhancing the model’s predictive performance and 

generalization ability. SSA performs a comprehensive search across the parameter 

space to identify the global optimum, effectively mitigating the uncertainties 

associated with empirical parameter selection. The primary parameter settings are 

presented in Table 5. 

Table 5. Main parameter settings of SSA. 

Population Size Maximum Iterations 
Optimization Parameter 

Dimensions 

Scouting 

Threshold 

Proportion of 

Discoverers 

Proportion of Sparrows Aware of 

Danger 

30 50 3 0.6 0.7 0.2 

The optimization targets include the maximum training epochs, the number of 

hidden units, and the initial learning rate. Each of these parameters plays a critical 

role. Maximum training epochs determine the adequacy of model training. The 

number of hidden units controls the network’s memory capacity and complexity. The 

initial learning rate affects both convergence speed and optimization quality. These 

parameters require careful tuning to balance computational efficiency and prediction 

accuracy. Excessive values lead to increased computation time and resource waste, 

whereas insufficient values may result in suboptimal predictive performance. Based 

on computational experience, the following constraints were established for 

parameter optimization: Lower bounds lb = [50, 100, 0.001] and upper bounds ub = 

[200, 250, 0.01]. The SSA iteratively searches within these defined dimensions and 

ranges to determine the optimal LSTM hyperparameter configuration. Results 

indicate that the optimal combination [180, 216, 0.0085] yields the lowest prediction 

error. 
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5. Comparison and analysis of forecasting results 

To evaluate the accuracy and stability of the MVMD-SSA-LSTM model, this 

section conducts an error comparison and analysis of commonly used baseline 

models, including BP, SVR, LSTM, and the optimized MVMD-LSTM model. All 

models were tested for 1-step, 2-step, and 3-step predictions, corresponding to 

forecasts made 1 h, 2 h, and 3 h in advance, respectively. Table 6 summarizes the 

error comparisons across different models and prediction horizons. The forecasting 

result curves for the primary models are illustrated in Figure 8, and the residual plots 

are shown in Figure 9, with the figures presenting the forecasting results for a single 

month. 

Table 6. Multi-step forecasting errors of different models. 

Step Model RMSE/kW MAE/kW R2 VAR/kW 

1 

BP 62.31 43.43 0.99683 87.90 

SVR 58.65 43.36 0.99690 92.97 

LSTM 52.35 36.35 0.99753 60.46 

VMD-LSTM 33.65 26.43 0.99898 48.96 

VMD-SSA-LSTM 29.94 23.87 0.99916 47.71 

MVMD-LSTM 32.84 24.74 0.99903 47.04 

MVMD-SSA-LSTM 28.57 21.66 0.99927 46.89 

2 

BP 84.65 60.57 0.99555 145.34 

SVR 85.67 59.82 0.99340 136.421 

LSTM 69.94 51.05 0.99560 102.26 

VMD-LSTM 42.87 34.17 0.99807 70.13 

VMD-SSA-LSTM 40.40 31.89 0.99833 68.92 

MVMD-LSTM 39.99 30.20 0.99858 64.15 

MVMD-SSA-LSTM 33.38 25.25 0.99900 47.65 

3 

BP 90.90 68.22 0.99448 169.74 

SVR 101.98 70.55 0.99061 182.55 

LSTM 87.99 67.29 0.99499 142.95 

VMD-LSTM 52.73 42.38 0.99603 83.62 

VMD-SSA-LSTM 49.86 38.91 0.99790 70.64 

MVMD-LSTM 48.06 36.73 0.99791 61.16 

MVMD-SSA-LSTM 41.34 32.36 0.99843 54.90 

To minimize prediction errors and enhance model accuracy, the LSTM network, 

which exhibited the best performance among BP, SVR, and LSTM models, was 

selected as the baseline model. As shown in Table 6, MVMD decomposition 

significantly improves the performance of the LSTM prediction model. Compared to 

the single baseline LSTM model, the MVMD-LSTM model achieves substantial 

reductions in prediction errors for 1-step, 2-step, and 3-step forecasts. Specifically, 

RMSE decreases by 37.27%, 42.82%, and 45.38%, respectively, while MAE 

decreases by 31.94%, 40.84%, and 45.41%. Additionally, R2 improves by 0.0015, 

0.0030, and 0.0029, and VAR decreases by 22.20%, 37.27%, and 57.22%. These 
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results indicate a significant reduction in errors, demonstrating that optimizing with 

the MVMD algorithm greatly enhances prediction accuracy and model stability, with 

more pronounced benefits as the forecasting horizon increases. 
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(c) 

Figure 8. The primary model’s multi-step forecasting results, (a) 1-step forecasting results; (b) 2-step forecasting 

results; (c) 3-step forecasting results. 
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Figure 9. The primary model’s multi-step forecasting residuals, (a) 1-step forecasting residuals; (b) 2-step forecasting 

residuals; (c) 3-step forecasting residuals. 

Building on the MVMD-LSTM model, the MVMD-SSA-LSTM introduces 

further optimization. Comparisons of their prediction results for 1-step, 2-step, and 

3-step forecasts reveal that RMSE decreases by 13.00%, 16.53%, and 13.98%, 

respectively, while MAE decreases by 12.45%, 16.39%, and 11.90%. R2 improves by 

0.00024, 0.00042, and 0.00052, and VAR decreases by 0.32%, 25.72%, and 10.24%. 

Residual plots further illustrate that the MVMD-SSA-LSTM model consistently 

achieves the smallest residual values across all prediction horizons. These findings 

confirm that optimizing key LSTM parameters using the Sparrow Search Algorithm 

(SSA) further enhances the model’s accuracy and stability. Moreover, the results 



Clean Energy Science and Technology 2025, 3(1), 297.  

21 

indicate that while the VDM-SSA-LSTM model performs slightly worse than the 

MVMD-SSA-LSTM model for 1-step predictions, the performance gap widens as 

the prediction horizon increases. 

6. Conclusion 

This study proposes a short-term building heating load forecasting framework 

based on Multivariate Variational Mode Decomposition (MVMD) and the Sparrow 

Search Algorithm-Long Short-Term Memory (SSA-LSTM) model. In the MVMD-

SSA-LSTM architecture, MVMD is first applied to decompose the original time 

series data of temperature, relative humidity, solar radiation, room occupancy rate, 

and building heating load. Supplementary features derived from the decomposition, 

combined with the original features, serve as the input for forecasting. Each mode of 

the building heating load is predicted individually, and the final forecasting is 

obtained by aggregating the predicted results. 

Experimental results demonstrate that the decomposition of raw data using 

MVMD, coupled with feature extraction, significantly enhances forecasting accuracy 

and model stability. This indicates that MVMD effectively identifies instabilities in 

time series data, reduces sequence complexity, and performs better than VMD. 

Compared with univariate decomposition methods, MVMD overcomes the 

frequency mismatch issue that arises from decomposing multi-factor input 

sequences. Furthermore, by conducting Pearson correlation coefficient analysis, 

MVMD effectively mitigates noise interference in building load data, reduces feature 

redundancy, and yields better predictive performance. 

Additionally, the integration of SSA to optimize the parameter settings of the 

LSTM model reduces the biases associated with empirically determined parameters, 

further improving the precision and stability of the predictive model. Compared to 

other baseline forecasting models, the MVMD-SSA-LSTM model exhibits superior 

performance in both 1-step and multi-step forecasting, demonstrating significant 

application potential. 
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