

Recent progress of MoS₂ for photocatalytic and electrocatalytic hydrogen generation—A review

Liang Xu¹, Zhiguo Song¹, Hongkun Chen², Yongjin Li^{1,*}, Jingwei Li^{3,*}, Ruchun Li^{2,*}

¹ Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan Province, China
 ² Faculty of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, Yunnan Province, China
 ³ School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, Guangdong Province, China
 * Corresponding author: Yongjin Li, liyongjin@kust.edu.cn; Jingwei Li, jingwei.li@gzhu.edu.cn; Ruchun Li, liruchun@ynnu.edu.cn

CITATION

Xu L, Song Z, Chen H, et al. Recent progress of MoS₂ for photocatalytic and electrocatalytic hydrogen generation—A review. Clean Energy Science and Technology. 2024; 2(3): 157. https://doi.org/10.18686/cest.v2i3.15 7

ARTICLE INFO

Received: 7 May 2024 Accepted: 12 August 2024 Available online: 19 September 2024

COPYRIGHT

Copyright © 2024 by author(s). *Clean Energy Science and Technology* is published by Universe Scientific Publishing. This work is licensed under the Creative Commons Attribution (CC BY) license.

https://creativecommons.org/licenses/ by/4.0/ Abstract: Hydrogen (H₂) plays a crucial role in the transformation of the energy structure due to its environmental friendliness, renewability and high energy density. The photocatalytic and electrocatalytic hydrogen evolution reaction (HER) presents a promising approach for H₂ production. Molybdenum disulfide (MoS₂) has emerged as a promising catalyst in photocatalytic and electrocatalytic HER due to its high activity, easy preparation and cheapness. However, it suffers from poor stability and inactive basal planes. In this review, we encapsulated the research advancements of MoS₂ for photocatalytic activity of MoS₂, such as doping, phase adjustment, surface modification and others, are also summarized. The relationship between structure and activity for enhanced H₂ generation by different means is briefly introduced. The challenges and directions of MoS₂ materials in photocatalysis for future research.

Keywords: photocatalysis; electrocatalysis; hydrogen evolution reaction; molybdenum disulfide

1. Introduction

Hydrogen (H_2) is considered as one of the options for the transformation of the future energy structure due to its advantages of being non-polluting and renewable and having a high energy density $(142 \text{ MJ} \cdot \text{kg}^{-1})$, which holds the potential to replace fossil fuels and alleviate global warming and atmospheric pollution [1-5]. Moreover, H₂, as a highly combustible diatomic gas, is also the least dense gas [6]. Under standard conditions, the mass of H_2 is only 6.897% of the air mass at the same volume [7]. In addition, H_2 is the most common element in the universe with high volatility, high calorific value of combustion and high energy, which can be used as an energy carrier and fuel. At present, H_2 can be produced through fossil fuel conversion, biomass conversion and photocatalytic and electrocatalytic water electrolysis [4,8–10]. Among them, hydrogen evolution reaction (HER) via photocatalytic and electrocatalytic water electrolysis has been considered as the most potential method for efficient catalysis. Catalysts play a crucial role in photocatalytic and electrocatalytic HER processes [11– 13]. Catalysts based on the noble metal Pt show an excellent HER property but their extensive application is severely limited by scarcity and high cost. Therefore, developing low-cost, highly active catalysts with attractive stability is of great significance.

Two-dimensional (2D) layered MoS_2 has received enormous attention due to its unique crystal structures and electronic and optical properties. MoS_2 has three tunable phases: 1T, 2H and 3R [14]. These properties allow MoS_2 as an excellent catalyst in various catalytic reactions, such as electrocatalysis and photocatalysis (**Scheme 1**). Previous works in the literature have confirmed that MoS_2 has active edge sites and inert basal planes [14,15]. However, the intrinsic activity of MoS_2 is restricted by its limited active edge sites. Therefore, new strategies to improve the intrinsic activity of 2D MoS_2 have aroused great research interest. Herein, the article focused on the recent research progress of MoS_2 for photocatalytic and electrocatalytic HER. The characteristics and modification methods of MoS_2 materials are introduced.

Scheme 1. Schematic highlight of MoS₂ for photocatalytic and electrocatalytic HER.

2. Structural feature

Generally, MoS₂ contains three different phase structures of 1T, 2H and 3R, where T, H and R represent tetragonal, hexagonal and rhombohedral, respectively, while the numbers 1, 2 and 3 indicate the number of layers in a unit cell, respectively, as shown in **Figure 1** [16]. Each MoS₂ monolayer is made up of three atomic layers with sandwiched molybdenum atoms between two layers of sulfur atoms. Generally, 1T-MoS₂ is metastable and possesses a single-layer atomic structure with octahedral metal coordination [17]. This structure leads to the metallic feature of 1T-MoS₂ in nature, meaning highly conductive. 2H-MoS₂ refers to a two-layer atomic structure with an adjacent monolayer spacing of 6–7 Å, where each layer is made up of a hexagonal arrangement of molybdenum atoms. 3R-MoS₂ is a rhombohedral structure with a band gap of 1.415 eV. However, 3R-MoS₂ is unstable at ambient temperature, which limits research on its reactivity. Interestingly, bulk MoS₂ is composed of multiple monolayers with weak van der Waals interactions, making them easy to separate. The adjacent monolayer distance can be tuned via chemical, electrochemical and solvothermal/hydrothermal methods. In addition, MoS₂ with different phases can

provide many unique features by constructing active unsaturated S/Mo atoms [14]. These enable MoS_2 to be utilized in various energy-related fields, including electrocatalysis, photocatalysis, rechargeable batteries, supercapacitors, fuel cells, etc. [18–21]. In this paper, the recent progress in photocatalytic and electrocatalytic HER is discussed.

Figure 1. Structures of MoS₂: 1T, 2H and 3R [16].

3. Recent progress of photocatalytic HER

Photocatalysis is a chemical reaction in which a substance is converted by the combined action of light energy and a catalyst. Since the discovery of light-assisted decomposition of water via TiO₂ electrode by Fujishima and Honda in 1972 [22], many photocatalysts have been developed to promote photocatalytic HER. Currently, photocatalytic technology has been widely studied in the fields of hydrogen preparation, pollutant degradation, CO₂ reduction, antimicrobial and air purification [23–28]. Among them, photocatalytic hydrogen production is an environmentally friendly and promising technology to obtain hydrogen by decomposing water through light energy and catalysts, and it has received increasing attention. As shown in Figure 2, there are many similarities between photocatalysis and plant photosynthesis, as both undertake material transformation under sunlight and decompose water [29]. The energy required for photocatalytic HER comes from solar energy, which is clean, harmless and easy to obtain, and the required device has a simple structure and no secondary pollution and is easy to control and very friendly to the environment [14]. Photocatalytic HER, however, is a very complex process. It is affected by the catalyst itself, such as the catalyst's crystal defects, particle size, morphology, specific surface area, interface barrier, etc. In addition, it is influenced by external environmental factors during the photocatalytic process, such as the light source, reaction temperature, pH value, stirring speed and so on [30,31].

Figure 2. Diagram of natural photosynthesis and artificial photochemical reaction [29].

3.1. Fundamentals of photocatalytic HER

The hydrogen evolution reaction of semiconductor photocatalysts can be roughly simplified as the following processes [29]:

- Absorption of incident light and photo-generated charge separation: When the photon energy of the incident light is greater than or equal to the band gap of a semiconductor catalyst, the semiconductor is photoexcited to produce electrons (photogenerated electron carriers) in the valence band, which transition to the conduction band of the semiconductor, thus leaving positively charged holes (photogenerated hole carriers) in the valence band.
- 2) Photogenerated electrons and holes migrate to active sites on the surface of the semiconductor: The process of electron and hole separation and migration is also related to the structure, crystallinity and grain size of the photocatalyst. The higher the crystallinity of the crystal, the fewer the defects. Defects can trap photogenerated electrons or holes to inhibit recombination for improved photocatalytic activity, and excess defects will become the recombination center instead, resulting in the reduction of photocatalytic activity. In addition, the reduction of grain size can shorten the distance of photogenerated carriers' migration to the surface of the photocatalyst, reducing the recombination rate of photogenerated carriers in the process of migration and improving photocatalytic efficiency.
- 3) Redox reaction on the photocatalyst's surface: Photogenerated holes with oxidizing ability oxidize H₂O adsorbed on the semiconductor's surface to O₂ and H⁺. Photogenerated electrons with reducing ability react with H⁺ to produce hydrogen. The chemical reaction is affected by surface active sites and the surface area. A large specific surface area can provide more active sites for photogenerated carriers to participate in the redox reaction.

Semiconductor materials for photocatalytic hydrogen production also need to meet the requirements that the oxidation potential of the top of the valence band is higher than that of O_2/H_2O (1.23 eV), that the reduction potential of the bottom of the conduction band is lower than that of H^+/H_2 (0 V vs. NHE), and that the band gap

width is greater than 1.23 eV. According to Equation (1), the wavelength of a light source directly used for photocatalytic hydrogen production should be less than about 1000 nm.

Band gap (eV) =
$$\frac{1240}{\lambda}$$
 (nm) (1)

3.2. Recent progress of MoS₂ for photocatalytic HER

MoS₂ nanomaterials possess outstanding optical and electronic properties and have attracted huge attention. In photocatalysis, MoS₂ has been considered as a promising co-catalyst for HER [32,33]. Generally, the band gaps of MoS₂ materials are different, such as 1.2 eV for bulk MoS₂ and 1.9 eV for single-layer MoS₂ due to quantum confinement. Thus, the size and number of layers of MoS₂ could affect its band gap and consequently adjust its photocatalytic activity. In addition, MoS₂ has some disadvantages, including low stability, low conductivity and the fast recombination rate of photogenerated carriers during photocatalytic HER. To overcome these problems, researchers have tried a variety of approaches [34-36]. For instance, when MoS_2 as a co-catalyst is supported on CdS, the formation of p/n junctions and a large number of active sites of monolayer MoS₂ nanosheets can enhance photocatalytic efficiency [34,35]. Liu et al. [37] reported that active edge sites of MoS_2 can be more exposed via the construction of a vertical orientation of MoS₂. Figure 3(a,b) show the structures of TiO_2 nanofibers and MoS_2 nanosheets. For the construction of a TiO_2 (MoS₂ heterostructure, MoS₂ nanosheets grow on TiO₂ nanofibers (Figure 3(c,d)). Figure 3(e) exhibits the schematic diagram of the TiO₂@MoS₂ heterostructure model. The vertically grown MoS₂ on TiO₂ nanofibers can expose a large number of active edge sites [37]. In the following subsections, details of improved strategies for MoS₂ for photocatalytic HER are summarized.

Figure 3. SEM images of (a) TiO_2 nanofibers, (b) pure MoS_2 nanosheets, (c) $TiO_2@MoS_2$ heterostructure after 12 h and (d) $TiO_2@MoS_2$ heterostructure after 24 h. (e) Schematic diagram of $TiO_2@MoS_2$ heterostructure model [37].

3.2.1. Doping

The progress of metal doping, non-metal doping and vacancy doping of MoS_2 was reviewed, and the effects of different types of doping on photocatalytic HER are summarized. It was found that doping can enlarge the light absorption range of a photocatalyst, increase its active sites, narrow its band gap, adjust its photogenerated

surface electron density, and reduce its charge transfer resistance [19,38–43]. Xue's team [38] prepared a co-catalyst of Co-doped MoS_x grown on TiO₂ nanoparticles using the photo-induction method and found that the formed highly active sites of "CoMoS" significantly improved HER activity. Co-MoS₂/g-C₃N₄ heterojunctions prepared by Wu et al. [19] improved the photocatalytic HER in a triethanolamine (TEOA) alkaline environment, where HER efficiency reached 3193 μ mol·h⁻¹·g⁻¹. Co doping was found to change the local electronic structure and exposed more active sites. As shown in **Figure 4(a)**, the photoexcited electrons produced by g-C₃N₄ can move to the surface of Co-MoS₂, and the co-catalyst Co-MoS₂ can efficiently capture the photoinduced electrons and simultaneously provide active sites to activate hydrogen by reducing H₂O to H₂. The density functional theory (DFT) calculation revealed that Co doping not only distorts MoS₂ crystals but also reduces the H binding free energy of HER.

Figure 4. (a) Schematic illustration of photocatalytic mechanism of Co-MoS₂/g-C₃N₄ hybrids under simulated solar light irradiation [19]. (b) Schematic diagram of S vacancy formation triggered by external O₂ and electrons. (c) Schematic diagram of oxidation reaction during formation of S vacancy. (d) Schematic diagram of formation of $MoS_{2-x}O_x$ by oxygen occupying S vacancy in photocatalytic reaction [43]. (e) XPS spectra with laser excitation. (f) 2H-MoS₂ semiconductor. (g) Schematic diagram of creation of electron-hole pairs with exponential excitation profile from optical penetration depth. (h) Metallic 1T-MoS₂ phase on surface layer of 2H-MoS₂ [40].

In a study, the HER activity of Ni-doped flower-like MoS_2 was found to reach 404.3 µmol·h⁻¹·g⁻¹ [39]. Compared with undoped MoS_2 , the doped sample had better charge separation and a stronger photoresponse at 600–700 nm. After six cycles of photocatalytic HER experiment, the hydrogen production of the photocatalyst maintained 95% of the initial hydrogen production. Sorgenfrei et al. [40] found that the energy band of the p-type doping of 2H-MoS₂ bent downward. The transient aggregation of surface electrons caused the transformation of the reversible 2H phase (semiconductor) into the 1T phase (metal) of the surface layer, which was completed

in only a few tens of picoseconds. As shown in **Figure 4(e)**, laser excitation from Xray photoelectron spectroscopy (XPS) caused surface photovoltage shifts in p-doped 2H-MoS₂ (marked with yellow-green), as well as chemical shifts in the S2p_{3/2} and S2p_{1/2} core level lines of 1T-MoS₂ (marked with gray). After 150 ps of laser stimulation, the peak produced by the 2H phase completely disappeared, indicating that the surface layer was now completely in the metallic 1T phase. The semiconductor 2H-MoS₂ is shown in **Figure 4(f)**, while the metallic 1T-MoS₂ phase on 2H-MoS₂'s surface layer is shown in **Figure 4(h)**. **Figure 4(g)** shows the electron-hole pairs and the exponential excitation curves generated by the light penetration depth, as well as the surface region separation of p-doped 2H-MoS₂, where electrons in the conduction band (denoted as CB) gather on the surface, while holes in the valence band (denoted as VB) migrate inward. The surface electron accumulation eventually produces and stabilizes the metallic 1T phase.

In addition, the entire basal plane of the 1T phase of MoS_2 has photocatalytic activity. Compared with the 2H phase, where only edge sites have photocatalytic activity, P-doped MoS_2 can improve HER efficiency under light irradiation. Using the hydrothermal method, Xin's team [41] prepared P-doped MoS_2 , which showed stronger light absorption in the visible range, faster carrier transfer speed and lower resistance. The photocatalytic hydrogen production rate of P-doped MoS_2/CdS binary heterojunctions prepared by Xu et al. [42] in a mixed solution of Na₂S and Na₂SO₃ was 8.86 mmol·h⁻¹·g⁻¹. Studies have shown that P-doped heterojunctions have a more favorable band structure for photocatalytic HER.

Wang et al. [43] found that in the actual photocatalytic process, photogenerated electrons can induce slowly incoming pure oxygen to form active O_2^- . When O_2^- combines with S, the electron cloud is rearranged to break the Mo-S bond, forming SO₂ gas. Then, the SO₂ gas escapes from the surface of MoS₂, thus producing the S vacancy (**Figure 4(b,c)**). The continuous incoming pure oxygen in the environment fills the S vacancy (**Figure 4(d)**). In this way, MoS₂ is dynamically converted into MoS_{2-x}O_x, and oxygen elements can be well dispersed in MoS₂. The theoretical calculation showed that an appropriate amount of oxygen can make a sample undergo intrinsic deformation and optimize the surface's electronic state. In addition, the synergistic effect of strain engineering and O doping increases dynamic active sites on MoS₂ and decreases photogenerated charge transfer resistance.

3.2.2. Surface modification and morphology control

Generally, catalysis occurs at the surface of catalysts. Thus, the surface feature of catalysts plays an important role in efficient catalysis. The edge sites of MoS₂ have a low hydrogen adsorption free energy (ΔG_H^*) of 0.08 eV [44,45], which is comparable to those of many precious metal catalysts (**Figure 5(a,b)**), facilitating the desorption of hydrogen molecules on its surface. Li et al. [46] reported that strong local polarization occurred the surface of MoS₂ nanocrystals to promote charge separation by the introduction of polar-faceted metal oxides and layered double hydroxides (LDHs). The obtained catalyst (Ru:MoS₂/CeO₂ nanocrystals) showed a high HER activity of 2977 µmol·h⁻¹·g⁻¹ and quantum efficiency reaching 66.8% at 473 nm of visible light irradiation. The exciton lifetimes of the Ru-MoS₂ catalyst were much prolonged by the assembly with CeO₂ nanocrystals and MgO (111) and ZnO

nanoparticles (**Figure 5(c)**). When the Ru-MoS₂ catalyst was mixed with LDHs, the exciton lifetime increased (**Figure 5(d)**). The polarity of metal oxides was linearly related to exciton lifetime and photocatalytic activity. The exciton lifetime and photocatalytic HER ability increased as the polarity of the metal elements increased (**Figure 5(e,f)**).

Figure 5. (a) Calculated free energy diagram for HER [45]. **(b)** Volcano plot of exchange current density as function of DFT-calculated Gibbs free energy of adsorbed atomic hydrogen for nanoparticulate MoS₂ and pure metals [44]. **(c)** Time-resolved photoluminescence spectra of Ru:MoS₂ mixed with polar-faceted oxide support. **(d)** Time-resolved photoluminescence spectra of Ru:MoS₂ mixed with non-polar-faceted oxide support. **(e)** Relationship between total polarity and exciton lifetimes. **(f)** Relationship between total polarity and photocatalytic HER activity [46].

In addition, a strategy to increase overall charge mobility has been proposed by using the exfoliation/etching method to expose more highly active edge sites [17]. Some studies have suggested that planar surface plasmon polaritons (SPPs) have a positive effect on the etching and thinning of MoS₂. MoS₂ can be etched into the required layer number and transverse dimension by controlling light power and incident direction [47]. This can be attributed to the reactive oxygen species produced

by plasma hot electrons weakening the interlayer interaction of MoS_2 and further promoting etching. Figure 6(a) shows the schematic illustration of inverted optical microscopy for triggering and monitoring the layer-controlled etching of MoS₂ nanoflakes. Excited SPPs are produced from the coupling of surface electromagnetic polaritons and oscillating free electrons propagated along the Au/water interface, generating an evanescent field with a penetration depth of approximately 200 nm. Atomic force microscopy (AFM) images of MoS₂ nanoflakes after etching (Figure 6(b-d) indicate the decreased thicknesses of MoS₂. As shown in Figure 6(e), timevarying optical images show that the direction of etching of MoS₂ nanosheets can be controlled by manipulating the direction of the propagation of the SPPs. Further studies have shown that the generated holes by exciton-plasma coupling in the valence band of MoS_2 lead to interlayer repulsion, while the generated electrons by plasma decay lead to interlayer dissolution. Liu et al. [48] proposed a local etching strategy, which realized the adjustment of the thickness and transverse size of MoS_2 (WS₂) and then adjusted the proportion of the photocatalyst's edges. Based on the method, the photocatalytic HER performance was 31 times and 47 times higher than those of unstripped MoS₂/CdS and WS₂/CdS, respectively. However, the preparation process of the local stripping method is relatively complicated and thus is not easy to be used for large-scale preparation.

Figure 6. (a) Surface-plasmon-polariton-driven etching (SPPE) strategy. (b) Optical images of pristine exfoliated MoS_2 nanoflakes. (c) Optical images of MoS_2 nanoflakes after etching. (d) AFM images and corresponding height profiles of MoS_2 nanoflakes after etching. (e) Optical images of different etching directions [47].

It is well known that a photocatalyst with unique morphology can efficiently expose active sites and improve the charge transfer efficiency of the photocatalyst. Li's team [49] weakened the interlayer van der Waals forces of 1T-MoS₂ by controlling the number of -NH and -NH₂ intercalations and modulated the crystallinity and layer thickness of MoS₂. The HER efficiency of the obtained materials (P-1T-MoS₂/CdS) in lactic acid was 235.0 mmol·h⁻¹·g⁻¹ ($\lambda > 420$ nm), which was 2.25 times that of naked CdS under the same experimental condition. Nanometer flower-like MoS₂ loaded with Au particles was loaded on both ends of nanorod-like CdS to obtain

dumbbell symmetrical-tip heterojunctions, as shown in **Figure 7(a)**. This special structure allowed electrons to migrate directionally to the tip and accumulate, maintaining the long life of photogenerated carriers. The TEM images of typical Au/MoS₂-tipped CdS nanowires synthesized in an LA electrolyte (AMTC-LA) are shown in **Figure 7(b,d)**. The enlarged TEM image of the AMTC-LA in **Figure 7(c)** shows that Au nanoparticles with a diameter of ~10 nm were precisely deposited on the surface of MoS₂ tips, where the lattice spacing of Au was 0.23 nm (**Figure 7(d)**). Element mapping analyses demonstrated that the Au nanoparticles were concentrated on the tip of MoS₂, while Cd was present in only the stem (**Figure 7(e)**). High-resolution XPS data indicated two peaks at 84.8 and 88.5 eV appearing in the Au spectrum of the AMTC-LA, corresponding to metallic Au (**Figure 7(f)**). In addition, the energy barrier at the MoS₂/CdS interface was reduced by using an appropriate size of Au particles as a co-catalyst for photocatalytic HER electron transfer [50].

Figure 7. (a) Diagram of synthesis of dumbbell-shaped Au/MoS₂/CdS heterojunctions. **(b)** TEM image of Au/MoS₂-tipped CdS nanowires (AMTC-LA). **(c)** TEM image of AMTC-LA. **(d)** HR-TEM image of AMTC-LA (inset: fast Fourier transform pattern). **(e)** Element mapping of AMTC-LA. **(f)** XPS spectra of MTC and AMTC-LA [50].

3.2.3. Heterojunction construction

Previous studies have shown that the edge sites of monolayer MoS_2 are more stable than those of few-layer MoS_2 , which is due to the increase of exciton binding energy and the decrease of carrier lifetimes caused by the transition from an indirect to a direct semiconductor [51]. From the construction of heterojunctions using MoS_2 , the light absorption capacity in the visible range can be further increased and the band gap position of the composite can be adjusted to be more suitable for photocatalytic HER. For instance, Peng's team [52] showed HER enhancement of up to 40-fold (compared with bare MoS_2) when the localized surface plasmon resonance (LSPR) wavelength of Au nanocages matched the absorption edge of MoS₂. With the aid of near-field enhancement, the energy of the surface plasma was transferred from Au nanocages to MoS₂ nanosheets, which promoted the electron-hole separation of MoS₂. By inserting a single layer of MoS₂ (ML-MoS₂) into a perovskite microcrystal nucleus by rapid recrystallization, Zhao's team [53] prepared ML-MoS₂/MAPbI₃ type II heterojunctions, in which each MAPbI₃ microcrystal (MC) anchored with multiple small-sized ML-MoS₂ nanosheets (Figure 8(a)). The obtained ML-MoS₂/MAPbI₃ MCs were uniformly sized rhombic dodecahedron-shaped MCs with an average size of 46 mm (Figure 8(b,c)). The surface photovoltage (SPV) diagram proved that the heterojunctions formed a strong internal electric field, which effectively inhibited charge recombination (Figure 8(d)). The ML-MoS₂/MAPbI₃ MCs showed a high hydrogen generation activity of 13.6 mmol $\cdot g_{Cat}^{-1} \cdot h^{-1}$ (Figure 8(e)). On the other hand, Guan's team [54] assembled MoS₂ nanoflowers and MAPbI₃ heterojunctions by colloidal precipitation. The results showed that the HER activity reached 29389 μ mol·h⁻¹·g⁻¹ and the photocatalytic efficiency was 7.35%, outperforming those of MAPbI₃ perovskite.

Figure 8. (a) Schematic illustration of structural configuration and redox processes of ML-MoS₂/MAPbI₃ MCs. (b) SEM image of ML-MoS₂/MAPbI₃ MCs. (c) SEM image of single ML-MoS₂/MAPbI₃ MC (inset: optical microscopy image with scale bar of 20 μm). (d) SPV distribution of ML-MoS₂/MAPbI₃ MCs. (e) Photocatalytic HER activity [53].

The photocatalytic HER efficiency of Bi_2O_3/MoS_2 heterojunction was shown to be 10 times higher than those of pure Bi_2O_3 and MoS_2 [55]. This was due to the expanded light absorption range. In addition, the Bi_2O_3/MoS_2 heterostructure formed p-n junctions, which had high-speed carrier transfer and can reduce the recombination of electrons and holes. Song et al. [56] prepared $MoS_2/ReS_2@CdS$ heterojunctions with a hydrogen production rate of 171900 μ mol·h⁻¹·g⁻¹. The photo-response range of ternary heterojunctions significantly improved, thanks to the dual-Z-scheme electron transfer mechanism of the ternary heterojunctions.

Furthermore, by intercalating Ti₃C₂ into MoS₂ layers, the two thin-sheet photocatalysts can be closely connected (Figure 9(g)) [57]. The scanning electron microscopy (SEM) images of the samples are presented in Figure 9(a-e). The size of the initial MoS₂ spheres was approximately 1 μ m (Figure 9(a)). Ti₃C₂ (Figure 9(e)) exhibited a clear multilayer structure, similar to that of exfoliated layered graphite. With the increase in Ti_3C_2 loading, MoS_2 completely covered the surface of the Ti_3C_2 layer (Figure 9(b-d)). As shown in Figure 9(f), the photocatalytic HER activities of pure MoS₂ and Ti₃C₂ were poor. However, the combination of MoS₂ and Ti₃C₂ greatly enhanced catalytic activity (the loading amounts of Ti_3C_2 were 0 wt%, 10 wt%, 30 wt% and 50 wt% of the total mass, where the obtained samples were marked as T0, T10, T30 and T50, respectively). Especially, the T30 sample possessed a high photocatalytic HER rate of 6144.7 mmol \cdot g⁻¹·h⁻¹, which was 2.3 times higher than that of pure MoS₂. This enhancement can be attributed to the presence of Ti₃C₂ promoting an efficient transfer of photogenerated electrons, indicating that the direction of charge transfer can be effectively controlled by a reasonable heterojunction design. In addition, CdS quantum dots were attached to MoS₂ nanosheets using a link assembly assisted by L-cysteine or mercaptoalkanoic acids. Ultrafast transient absorption measurements showed that the transfer of electrons from the quantum dots to the semiconductor was accomplished in 0.5-2 ps. The surfactant's functionalized quantum dot hole trap was located at the lower energy and closest to the edge of the valence band. By comparing the length of the surfactant's bridging distance, it was found that the reduction of the bridging distance accelerated the transfer speed of electrons between the quantum dots and the nanosheets [58]. Generally, $CuInS_2$ and Cu(In)S can effectively absorb light ranging from visible light to the near-infrared solar spectrum [59]. Vertical-epitaxial ultra-thin MoS_2 grown on the tip of a CuInS₂/CuS rod-like photocatalyst provided a large number of edge S sites (Figure 10(a)). TEM images of CuInS₂-CdS-MoS₂ HNs and CuInS₂-Cd(In)S-MoS₂ HNs (Figure 10(b,c)) revealed a rod-like structure. Furthermore, element mapping images (Figure 10(d)) displayed that S and In were distributed throughout the entire structure with Cd-rich and Mo-rich tips and Cu-rich stems, indicating that In³⁺ partially migrated to the tip along with Cd²⁺ ion incorporation. Cross-arranged CuInS₂/Cu(In)S/MoS₂ Type II heterojunctions provided a good channel for electron transfer and also improved the stability of the photocatalytic materials. After 12 h of three cycles of photocatalysis, the HER activity, morphology, crystal structure, and chemical state of the sample remained good. In addition, CuInS₂/Cd(In)S/MoS₂ heterojunctions were prepared via cationic exchange from the tip Cu to Cd, and the photocatalytic HER reached 8000 μ mol·h⁻¹·g⁻¹ (Figure 10(e)). Recently, researchers prepared quaternary heterojunctions by using mesoporous graphitic carbon nitride,

black phosphorus and molybdenum disulfide and incorporating Ni and Co co-catalysts (m-CN/BP/MoS₂-Y (Y: Ni, Co)), which formed Type I heterojunctions between BP and m-CN and formed Type II heterojunctions between m-CN and MoS₂, in addition to forming Type II heterojunctions between MoS₂ and BP [60]. The photogenerated electrons were transferred to Ni or Co to form H₂. The photocatalytic HER activity of the quaternary heterojunctions was 10 times higher than that of the BP/m-CN binary heterojunctions.

Figure 9. SEM images of MoS_2/Ti_3C_2 heterostructure synthesized at different Ti_3C_2 loading amounts: (a) T0, (b) T10, (c) T30, (d) T50 and (e) Ti_3C_2 MXene. (f) Photocatalytic H₂ production of Ti_3C_2 MXene and MoS_2/Ti_3C_2 heterostructures at different Ti_3C_2 loading amounts. (g) Schematic illustration of synthesis process of MoS_2/Ti_3C_2 heterostructure [57].

Figure 10. (a) Schematic illustration for selective epitaxial-hybrid of tripartite HNs. (b) TEM image of CuInS₂-Cu₂S-MoS₂ HNs. (c) TEM image of CuInS₂-Cd(In)S-MoS₂ HNs. (d) STEM-EDX elemental mapping images of single CuInS₂-Cd(In)S-MoS₂. (e) H₂ evolution rates of catalysts under visible light illumination ($\lambda > 420$ nm) [59].

3.2.4. Phase transformation

1T-MoS₂ and 2H-MoS₂ have been widely researched as catalysts. Compared with the conventional 2H-MoS₂ semiconductor, it is believed that 1T-MoS₂ with its metallic phase has abundant active sites at both its edges and basal planes, which can be used as adsorption and reaction sites of reactant molecules to accelerate reaction kinetics [61]. Previous reports have shown that P doping can convert the 2H semiconductor phase into the 1T metal phase of MoS₂ [40,41]. Das et al. [62] used a 532 nm laser to induce MoS₂ from a 2H phase to a 1T phase. Li's team [15] prepared 1T/2H-MoS₂ heterojunctions with a hydrogen production rate of 22.4 μ mol·h⁻¹ by adjusting the molar ratio of Mo/S via the hydrothermal method. The various methods for modifying MoS₂ to enhance its photocatalytic HER are summarized in **Table 1**.

Category	Photocatalyst	Synthesis method	Incident light (nm)	Light source	Activity (μmol·g ⁻¹ ·h ⁻¹)	Quantum yield (%)	Morphology	Ref.
Doping	Ni@MoS ₂	Hydrothermal	$\lambda = 420$	Xe lamp (300 W)	404	-	Microflowers	[39]
	P-MoS ₂	Hydrothermal	-	Xe lamp (300 W)	278.8	-	Interwoven nanosheets	[41]
	$MoS_{2-x}O_x$	Dynamic oxidation	$\lambda > 420$	Xe lamp (300 W)	1600	-	Nanosheets	[43]
Surface modification and morphology control	P-1T- MoS ₂ /CdS	Hydrothermal	$\lambda > 420$	Xe lamp (300 W)	235,000	49% at 420 nm	Nanosheets/ nanoflowers	[49]
	Au/MoS_2	Deposition	$\lambda > 400$	Hg lamp (200 W)	11,900	-	Nanoparticles	[52]
	MoS ₂ / MAPbI ₃	Colloidal precipitation	λ > 420	Xe lamp (280 W)	29,389	13.1% at 420 nm	Rhombic dodecahedron- shaped microcrystals	[54]
						22.1% at 500 nm		
Heterojunction construction	MoS_2/Ti_3C_2	Hydrothermal	$\lambda > 420$	Xe lamp (300 W)	6144.7	-	Flower-like nanosheets	[57]
	CuInS ₂ /Cd(In)S /MoS ₂	Hot injection	$\lambda > 420$	Xe lamp (300 W)	8000	3.8% at 420 nm	Nanorods	[59]
	CuS-MoS ₂ -1T	Hydrothermal	$\lambda > 300$	Xe lamp (300 W)	9648.7	45.1% at 400 nm	Octahedrons	[63]
	O-1T/2H– MoS ₂ /g-C ₃ N ₄	Hydrothermal	$\lambda > 300$	Xe lamp (500 W)	1487	7% at 370 nm	Nanosheets	[64]

Table 1. HER properties of modified MoS₂ photocatalysts.

Currently, various 1T-MoS₂-based heterojunctions have been developed for enhancing the catalytic performance of MoS₂. Octahedral CuS/1T-MoS₂ heterojunctions were formed by the in-situ growth of mesopore-structured 1T-MoS₂ in octahedral Cu metal-organic frameworks. Figure 11(a) shows the schematic illustration of the synthesis process of CuS-MoS₂-1T nanohybrid (via the confined template method) and CuS-MoS₂-2H nanohybrid (without confinement). The photocurrent density-time (I-t) curves in Figure 11(b) exhibited that CuS-MoS₂-1T generated the highest photocurrent because of the improved carrier transfer performance of 1T-MoS₂. As shown in Figure 8(c), CuS-MoS₂-1T exhibited the smallest arc radius relative to those of CuS, 2H-MoS₂ and CuS-MoS₂-2H, attributed to the high electronic conductivity of 1T-MoS₂ [63]. The coupling of O-doped 1T/2H-MoS₂ and g-C₃N₄ increased the photocatalytic HER to 1487 μ mol·h⁻¹·g⁻¹ because the metallic properties of the electronic structure of 1T-MoS₂ improved the electrical conductivity of the heterojunctions. The 1T-MoS₂ acted as an electron-trapping agent and promoted the separation of photogenerated charge carriers. In addition, the 1T-MoS₂ had a large number of HER active sites at both base and edge sites. In addition, the O doping of MoS₂ caused crystal distortion, thereby regulating the electronic structure [64].

Figure 11. (a) Schematic illustration of synthesis process of CuS-MoS₂-1T and CuS-MoS₂-2H nanohybrids. **(b)** EIS Nyquist plots. **(c)** Photocurrent responses [63].

MoS₂ materials have great potential and research value in the field of photocatalytic HER, far beyond the capabilities demonstrated today. Although, at present, MoS₂ materials during photocatalytic HER suffer from some problems and challenges, such as competing spectral absorption range and redox potential, low photocatalytic efficiency, insufficient stability and fast photogenerated electron-hole recombination. However, with improvements in exploration methods and strategies and a better understanding of photocatalytic HER, MoS₂ materials have a broad future in the field of photocatalytic HER. In the future, high-throughput DFT predictions and the addition of large models of artificial intelligence will give more modifications and new properties of MoS₂ materials [65]. This will save researchers a lot of time and effort for experimental studies.

Improvements in preparation methods and a deep understanding of the photocatalytic HER mechanism of MoS_2 are very important. The purity of MoS_2 prepared via the wet chemical method is not as high as those prepared via other methods. MoS_2 synthesis of heterojunction materials can improve the light absorption range and accelerate electron-hole transfer [39]. Compared with flat MoS_2 , wrinkled MoS_2 has faster electron relaxation [66]. It is generally believed that near-infrared light cannot directly excite MoS_2 catalysts to produce electrons and holes with sufficient energy to drive photocatalytic HER, but the infrared thermal effect can increase reaction temperature, mass transfer and the formation and breaking of chemical bonds in a catalytic reaction, thus contributing to a higher HER reaction rate [67]. In addition, the relationship between MoS_2 's basal planes and edge sites, the change in its phase during photocatalysis and the transfer path of electrons are still unclear. Moreover, the formation mechanism and interface force of heterojunctions constructed by MoS_2 have not been reported. The large-scale and commercial application of photocatalytic MoS_2

materials is also one of the future development directions. For example, the total solarhydrogen conversion efficiency of photocatalyzed HER via a hydrogen farm strategy was found to exceed 1.85% [68].

4. Recent progress of electrocatalytic HER

4.1. Mechanism of electrocatalytic HER

Electrochemical HER involves a two-electron transfer pathway, which can be expressed by following two steps: (1) the formation of adsorbed H intermediates (H*), called the Volmer step, and (2) H₂ generation from the combination of H*, called the Heyrovsky or Tafel step. In general, there are significant differences in the Volmer reaction in different pH environments (**Table 2**). In alkaline and neutral electrolytes, the Volmer reaction process needs to undergo water dissociation with H-OH breakthrough to form H* intermediates. The slow kinetics of water dissociation is a bottleneck for water electrolysis in an alkaline or neutral medium. In acidic electrolytes, the Volmer reaction can directly capture H⁺ from electrolytes to form H* intermediates. Subsequently, H₂ may be produced through the Heyrovsky reaction or Tafel reaction, which is determined by the low or high coverage of H* intermediates, respectively. The true catalytic mechanism is mainly related to the surface element composition, surface roughness and electronic structure of the electrocatalyst. For the HER process, the Tafel slope is an efficient method to estimate the catalytic mechanism by the following equation (Equation (2)):

$$= a + b \log |j|$$
⁽²⁾

where η is the overpotential, *j* is the current density and *b* is the Tafel slope. The theoretical Tafel slope values for Volmer, Heyrovsky and Tafel reactions are 117, 39 and 29 mV·dec⁻¹, respectively. It is worth noting, however, that the Tafel slopes of samples are different at various potential ranges, which implies that the HER mechanism changes at different potentials. Thus, the region for Tafel slope analysis is crucial for determining the HER mechanism and comparison with other reported materials.

Alkiline and neutral meidia	Process	Acid media
$\mathrm{H_2O} + * + \mathrm{e^-} \rightarrow \mathrm{H}^* + \mathrm{OH^-}$	Volmer	$\mathrm{H^{+}} + \mathbf{*} + e^{-} \rightarrow \mathrm{H}\mathbf{*} + \mathrm{H_{2}O}$
$\mathrm{H}^{*} + \mathrm{H}_{2}\mathrm{O} + \mathrm{e}^{-} \rightarrow ^{*} + \mathrm{OH}^{-} + \mathrm{H}_{2}$	Heyrovsky	$\mathrm{H}^{\scriptscriptstyle +} + \mathrm{H}^{\color{black}{\color{black}{\ast}}} + \mathrm{e}^{\scriptscriptstyle -} {\color{black}{\rightarrow}} \mathrm{H}_2 + {\color{black}{\color{black}{\ast}}} + \mathrm{H}_2 \mathrm{O}$
$\mathrm{H}^{*} + \mathrm{H}^{*} \rightarrow ^{*} + \mathrm{H}_{2}$	Tafel	$\mathrm{H}^{*} + \mathrm{H}^{*} \rightarrow ^{*} + \mathrm{H}_{2}$

Table 2. HER reaction mechanisms in alkaline, neutral and acidic media.

* represents active sites

4.2. Recent progress of MoS₂ for electrocatalytic HER

As a typical sulfide, MoS_2 has been widely used in many energy-related fields, such as electrocatalysis, battery, photocatalysis and thermocatalysis, due to its unique physical and chemical properties [69,70]. Especially, MoS_2 has emerged as a promising alternative to Pt-based electrocatalysts for HER due to its excellent catalytic activity and earth-abundance (**Scheme 2**). This is attributed to the favorable electronic structure of MoS_2 , which allows for efficient adsorption and activation of H*

intermediates. Furthermore, MoS₂ can be easily synthesized via various methods using tunable morphologies, such as nanoparticles, nanosheets and nanospheres. Hinnemann et al. [45] were the first to find that Mo edges (1010) of MoS₂ have similar properties with hydrogenases and can produce stable H* intermediates. The theoretical calculations revealed that the unsaturated Mo edges of MoS₂ are crucial active sites for catalytic HER and has attractive free energy of H adsorption. The basal planes of MoS_2 are catalytically sluggish. The results confirmed MoS_2 as an HER electrocatalyst, and thus MoS₂ received great attention. Thereafter, Jaramillo and coauthors [44] identified the relationship between MoS₂'s active sites for HER and electrocatalytic activity. They determined the surface sites of MoS₂ using scanning tunneling microscopy and then systematically tuned the active site distribution. The electrocatalytic results showed that the HER activity linearly correlated with the number of edge sites on MoS₂. Zhang et al. [71] also studied the origin of active sites in monolayer MoS₂. They found that its HER property positively related to Moterminated edge sites and the phase structure transition. The basal plane activity of 1T- MoS_2 was found to be beneficial to catalytic HER compared with that of 2H-MoS₂. Chen et al. [72] provided Raman spectroscopic evidence that confirmed the S-H bond formation on MoS₂'s surface via in-situ Raman measurements. This suggests that S sites on the surface of MoS₂ can act as catalytically active sites for HER.

Scheme 2. Recent progress of MoS₂ for electrocatalytic HER.

Although MoS_2 has been confirmed as a potential candidate for an excellent electrocatalytic HER, its intrinsic activity still needs to be further enhanced compared with those of Pt-based electrocatalysts. Various methods, such as the exposure of edge sites, phase regulation, heterostructure construction, defect engineering, doping and compound effect, have been proposed to improve the catalytic HER activity of MoS_2 .

4.2.1. Exposure of edge sites

Generally, MoS_2 contains active edge sites and inert basal planes. To enhance its catalytic HER activity, efficient strategies have been proposed to construct active edge sites on its inert basal planes [73–76]. Li et al. [74] were the first to propose activating the basal planes of 2H-MoS₂ by introducing S defects and strain engineering. The theoretical and experimental results revealed that the strained S vacancies were new active sites in the basal planes and that the free energy for H adsorption (ΔG_H) was

also tuned, contributing to the high intrinsic HER property. Hence, various S vacancies have been constructed using efficient methods to activate the basal planes of 2H-MoS₂. Tsai et al. [77] adopted electrochemical desulfurization to generate scalable S vacancies on the basal planes of MoS₂, which can be regulated by changing the applied desulfurization potential. The resulting stable active sites showed a good HER performance with a high per-site turnover frequency value. Liu and co-authors [78] employed point defects and vacancies to synergistically activate the inert basal planes of MoS₂ for improved HER performance. By combining on-chip electrochemical tests with theoretical calculations, they found that the type and amount of defect configurations played a crucial role in the catalytic HER. Man et al. [79] reported sulfur-vacancy-rich 2H-MoS2 via a unique salt-assisted chemical vapor deposition method (Figure 12(a)). Figure 12(b-d) shows the distribution of sulfur vacancies and the corresponding strain maps. The vacancy density was controllably tuned with S vacancy ratios from 7.56% to 22.16%. In the strain maps, the strain value can be up to 14% with the increase in KCl concentration. The obtained MoS₂ exhibited a small overpotential of $\approx 158.8 \text{ mV}$ at 100 mA·cm⁻² in an acid electrolyte, outperforming previously reported MoS₂-based electrocatalysts.

Figure 12. (a) Synthesis process of S-vacancy-rich MoS_2 . **(b)** Sulfur vacancy ratios marked on high-resolution STEM images. **(c)** Strain color scale of shear strain (E_{xy}). **(d)** Strain color scale of rotation lattice (rotation-*xy*, or R_{xy}). **(e)** HER performances [79].

In addition, metal or heteroatom doping [18,80–82] has been found to be another efficient way to activate basal planes and increase active sites. For instance, Xiao et al. [80] found that N dopants in MoS₂ exhibited a small overpotential of 35 mV with a low Tafel slope of 41 mV·dec⁻¹. The experimental and first-principle approach confirmed that N dopants activated S-edge sites and enhanced the conductivity of MoS₂. Fu et al. [18] used metal Zn to produce S vacancies on MoS₂ via Zn doping, as well as to activate the basal planes. The obtained MoS₂ had a decreased ΔG_H on S vacancy sites of MoS₂ near Zn atoms, which contributed to a low HER overpotential of 194 mV at 10 mA·cm⁻². Anjum et al. [83] prepared an all-in-one MoS₂ electrocatalyst with NH₃ molecules intercalation (ammoniated MoS₂, or A-MoS₂). Subsequently, the A-MoS₂ was in-situ reduced to remove the intercalated NH₃ and H₂S and to form all-in-one MoS₂ with multifunctional active sites (R-MoS₂). The electrocatalytic HER performance of the R-MoS₂ was even superior to that of commercial Pt/C, indicating its high potential for HER systems.

4.2.2. Phase regulation

As we know, MoS₂ has three different phase structures, which are 1T, 2H and 3R. 2H-MoS₂ has been widely researched as an electrocatalyst. Recently, a considerable amount of works in the literature revealed that 1T-MoS₂ exhibited an enhanced catalytic HER activity than 2H-MoS₂ due to its high conductivity and unique structural advantage. Lukowski et al. [84] reported the fabrication of 1T-MoS₂ nanosheets using chemical exfoliation, which showed superior catalytic HER activity, attributing to favorable reaction kinetics, good conductivity and increased density of active sites. Yin et al. [85] systematically explored the correlation among the phase structure, edge sites, S vacancies and catalytic HER activity. They synthesized porous 1T-MoS₂ (P- $1T-MoS_2$) via lithiation, desulfurization and exfoliation (Figure 13(a-d); steps I, II and III) and porous 2H-MoS₂ nanosheets (P-2H-MoS₂, Figure 13(e)) via facile annealing from the synthesized P-1T-MoS₂ (Step IV). The porous feature of P-1T- MoS_2 was confirmed via TEM, as indicated by red arrows in Figure 13(f). Figure 13(g) shows the linear sweep voltammetry (LSV) curves, in which P-1T-MoS₂ displayed a much higher HER performance with 153 mV at $j = -10 \text{ mA} \cdot \text{cm}^{-2}$ than other types of MoS₂. The results revealed that the HER performance of 1T-MoS₂ generally was superior to that of 2H-MoS₂, indicating that the phase played a crucial role in catalytic HER. In addition, both edge sites and S vacancies also enhanced the catalytic HER property. This study offers a reference for developing highly active MoS₂ electrocatalysts.

Figure 13. Schematic illustration of preparation of mesoporous 1T-MoS₂ nanosheets from bulk MoS₂ via (**a**) lithiation (**b**), desulfurization and (**c**) exfoliation. (**d**) P-1T-MoS₂ from Steps I, II and III. (**e**) P-2H-MoS₂ from Step IV. (**f**) TEM image of 1T-MoS₂. (**g**) Catalytic activities of samples [85].

For facile and controllable preparation of 1T-MoS₂, numerous studies have been devoted to developing efficient synthesis methods. Chang's group [86] accurately fabricated the different phases of MoS₂ by using Li-molten salt and tuning the calcination temperature via exfoliation. The obtained monolayer 1T-MoS₂ was found to directly rely on annealing temperature and had excellent catalytic HER activity. Zhu et al. [87] reported a scalable phase-engineering strategy to obtain monolayer 1T-MoS₂ using weak Ar-plasma bombardment. The existence of S vacancies (point defects) was found to stabilize the 1T-MoS₂ phase. Liu et al. [88] developed a simple hydrothermal route to prepare 1T-MoS₂ nanosheet arrays vertically grown on a carbon cloth (1T- MoS_2/CC), which was stable for 45 days under ambient conditions. The obtained 1T-MoS₂/CC provided rich active sites, enhanced accessibility and good conductivity, leading to an attractive HER activity with 151 mV to reach 10 mA \cdot cm⁻². Besides, Li et al. [89] synthesized defect-rich 1T-MoS₂ via the solvothermal method, where the proportion of the 1T-MoS₂ was tuned using the amount of acetic acid. The optimized 1T-MoS₂ delivered a low overpotential of 136 mV at 10 mA·cm⁻² and a small Tafel slope of 45 mV·dec⁻¹. Yang's group [90] reported a large-scale strategy for highconcentration 1T-MoS₂ with an excellent HER performance via ionic-liquid-assisted hydrothermal reaction, which can be extended to prepare 1T-WS₂, 1T-MoSe₂ and 1T-WSe₂.

Although many synthesis methods have been proposed, the thermodynamic metastability of 1T-MoS₂ extensively limits its stability. Recently, atom intercalation in MoS₂ has been confirmed to stabilize MoS₂'s phase structure. For instance, Ekspong et al. [91] developed sulfur-rich intercalated 1T-MoS₂ on graphitic nanoribbons with an S:Mo ratio of ~2.3:1, which sustained its stability for several months. Both experimental and theoretical results found that the active sites on the basal planes were activated with an outstanding $\Delta G_{\rm H}$ value of 0.06 eV, which in turn improved catalytic

activity. Gao's group [92] confirmed that the formation of 1T-MoS₂ can be induced using metal doping. Their results found that Co/Ni co-doping provided abundant electrons for Mo atoms, subsequently leading to phase transition. The obtained Co/Ni-MoS₂ possessed an excellent alkaline HER property. Jiang et al. [93] proposed a strategy of Se and O co-insertion to induce the transition of MoS₂ from the 2H phase to the 1T phase. Guo's group [94] reported a chemical etching method to construct 1T-MoS₂ with different S vacancies (1T-MoS₂-V_S) for efficient catalytic HER. Figure 14(a) shows the schematic of the synthesis of $1T-MoS_2-V_8$. K⁺ ions intercalated in the interlayer of 2H-MoS₂ to form KMoS₂, and 1T-MoS₂ was obtained by the extraction of K^+ from KMoS₂. Afterward, the 1T-MoS₂ was immersed in an acidic K₂Cr₂O₇ solution to obtain S vacancies. The electrochemical measurements are shown in Figure 14(b-d). The 1T-MoS₂-V_S exhibited a lower overpotential of 158 mV at 10 $mA \cdot cm^{-2}$ and a smaller Tafel slope of 74.5 mV·dec⁻¹. A little degradation in its current density after a continuous 24-h test suggested remarkable stability for HER. Particularly, the electronic states of the 1T-MoS₂-V_s (Figure 14(e-g)) demonstrated the charge redistribution with the activated Mo-Mo bonds, which led to an optimal ΔG_{H^*} value for catalytic HER.

Figure 14. (a) Fabrication procedure of $1T-MoS_2-V_s$. (b) LSV curves of $1T-MoS_2-V_s$. (c) Tafel slope of $1T-MoS_2-V_s$. (d) Stability result of $1T-MoS_2-V_s$. (e) Optimized structure, (f) Calculated charge density difference. (g) ΔG_{H^*} in different exposed S atoms of $1T-MoS_2-V_s$ [94].

4.2.3. Heterostructure construction

Recently, heterostructure construction has been shown to demonstrate outstanding performance for electrocatalysis, including electrocatalytic HER, OER, etc. Usually, heterostructured catalysts are composed of two/multiple functional components with tunable electronic interaction and distinct synergetic effects. Herein, MoS_2 heterostructured electrocatalysts for HER are summarized. A MoS_2 - Ni_3S_2 heterostructure was reported by Yang's group [95] which was directly supported by Ni foam. MoS₂ nanosheets were hierarchically decorated on Ni₃S₂ nanorods, in which the hierarchical MoS₂-Ni₃S₂ heterostructure showed highly active heterointerfaces and facilitated charge transport, thus presenting a low overpotential of 98 mV to reach 10 $mA \cdot cm^{-2}$. A Ni₂P/MoS₂ heterostructure is constructed by Kim et al. [96] which were hybridized with conductive N-doped carbon supports. The generated electrocatalyst delivered Pt-like catalytic HER activity. N-doped carbon played a key role in the conductivity and stability of the Ni₂P/MoS₂ heterostructure, enhancing the potential for hydrogen production. Kim et al. [97] developed a 0D-2D Co₉S₈-MoS₂ heterostructure, where ultrasmall Co₉S₈ nanoparticles were loaded on the surface of MoS₂ using Co-S-Mo covalent bonds. The Co₉S₈-MoS₂ heterostructure offered electron-rich Mo sites generated by the interface charge redistribution from Co to Mo sites. Furthermore, S defects, which were formed due to reductive annealing, activated adjacent Mo atoms to increase catalytic HER. The experimental and DFT results revealed that the $0D-2D Co_9S_8-MoS_2$ heterostructure presented an excellent catalytic HER activity in electrolytes with a wide range of pH.

As mentioned above, 1T-MoS₂ has much higher electrical conductivity and a better catalytic HER performance than those of 2H-MoS₂. Wang et al. [98] proposed constructing 1T–2H-MoS₂ heterostructures via a simple one-pot annealing treatment, which showed improved electrical conductivity, had more active sites and delivered promoted electrocatalytic HER properties. Cheng et al. [99] constructed a MoS₂/ α -MoC heterostructure using two straightforward and facile steps, as shown in **Figure 15(a)**, which formed an in-plane heterostructure of MoS₂(002)/ α -MoC(111) (**Figure 15(b)**). The MoS₂/ α -MoC led to lattice strain with an adjustive electronic configuration and thus presented Pt-like activity for HER with only a low 78 mV of overpotential at 10 mA·cm⁻² and a small Tafel slope of 38.7 mV·dec⁻¹ (**Figure 15(c,d**)). Besides, Sun et al. [100] developed Mo-MoS₂ Mott-Schottky heterojunctions (Mo-MoS₂ MSH) by combining the semiconductor MoS₂ with the metal Mo. The electronic structure of the Mo-MoS₂ MSH was effectively optimized with enhanced H adsorption. The Mo-MoS₂ MSH only needed overpotentials of 91, 138 and 128 mV to achieve 10 mA·cm⁻² in acid, alkaline and neutral solution, respectively.

Figure 15. (a) Schematic illustration of synthesis of MoS_2/α -MoC heterostructure. (b) Hypothesized top and side views of in-plane structure. (c) Polarization curves. (d) Tafel slopes [99].

4.2.4. Defect/vacancy engineering

Defect/vacancy engineering is an efficient strategy to construct specific unsaturated active centers and tune electronic structures. Unsaturated active centers can serve as active sites for intermediate adsorption/desorption, thereby enhancing catalytic properties. S-vacancy and Mo-vacancy engineering have been widely confirmed as efficient methods to expose more active sites in MoS₂ and improve HER [101–104]. Generally, S vacancies are more easily formed during the synthesis process. Ye et al. [105] reported the defect engineering of monolayer MoS₂ using O plasma annealing, which resulted in improved HER performance. They illustrated the correlation between changes in MoS₂'s microscale structure and HER properties for the first time, proving that defect engineering could produce more catalytic active edge sites and thus promote HER activity. Li et al. [101] also explored the relationship between HER activity and surface S vacancies of MoS₂. With the increase in S vacancies, two different domains were reported, which were point defects at low Svacancy concentrations and a large number of undercoordinated Mo atoms at high Svacancy concentrations. The HER activity rapidly accelerated by the point defects, but the highest HER performance was obtained from the formation of undercoordinated Mo atoms through S stripping. This work provides a reference for the development of defected MoS_2 to boost HER. Wang's group [104] initially regulated the state (concentration and distribution) of S vacancies via high throughput calculations. The state of S vacancies was experimentally modulated using etching parameters (etching duration, etching temperature and etching solution concentration). The results found that MoS_2 with single S vacancies exhibited optimal HER performance than that of MoS_2 with agglomerate S vacancies. The outstanding property can be attributed to the more effective adjustment of the surface electronic structure and electrical transportation.

Zhan et al. [106] explored the relationship between the local atomic environment of vacancies and HER performance of MoS2. A series of models with different vacancies were first built to theoretically evaluate ΔG_{H^*} . The calculation results confirmed that H* can be adsorbed on Mo atoms and that ΔG_{H^*} decreased due to the existence of vacancies. Among these models, M-MoS₂ (V_{MoS₅}-MoS₂) with more Moterminated vacancies had the lowest ΔG_{H^*} of 0.04 eV. Generally, ΔG_{H^*} was found to rely on the interfacial electronic structure. As shown in Figure 16(a), exposed Mo atoms in M-MoS₂ can obtain more electrons to increase the electron density of Mo atoms, which can be verified via the Bader charge (Figure 16(b)). The average Bader charge of Mo atoms in M-MoS₂ was \sim 5.20, which was higher than those of MoS₂ (perfect MoS₂) and S-MoS₂ (V_{MoS₂}-MoS₂). Electron-rich Mo atoms contributed to the Volmer reaction for HER. Additionally, the larger electron cloud (Figure 16(c)) on Mo sites in M-MoS₂ produced a stronger electronic coupling and more efficient orbital interaction (Figure 16(d)) for more favorable H desorption. Specifically, the calculation of integrated crystal orbital Hamilton populations (ICOHPs) resulted in more negative values, as shown in Figure 16(e), which further revealed enhanced H desorption. The ICOHP values of MoS₂, M-MoS₂ and S-MoS₂ were -0.06, -2.20 and -2.35, respectively. M-MoS₂ possessed a moderate ICOHP value, suggesting beneficial H adsorption. These results showed that the atomic environment surrounding vacancies was crucial for effectively regulating the Volmer step and H adsorption. MoS₂ with more Mo terminated vacancies was favorable for better HER performance. As seen from LSV curves in Figure 16(f), MoS₂ with the fewest vacancies had the largest overpotential of 277 mV at 10 mA·cm⁻² (η_{10}). The overpotential for S-MoS₂ decreased to 235 mV. M-MoS₂ was identified as the optimal sample for HER with the smallest η_{10} value of 210 mV. In particular, along with an overpotential of 250 mV, M-MoS₂ showed a current density of 51.4 mA \cdot cm⁻², which was about four-fold that of S-MoS₂ and eight-fold that of MoS₂. The Tafel plots in Figure 16(g) show slopes of 60.7, 110.1 and 125.8 mV·dec⁻¹ for M-MoS₂, S-MoS₂ and MoS₂, respectively, where a lower Tafel slope represents better HER kinetics. As shown in Figure 16(h), M-MoS₂ remained almost unchanged for 40 h to generate H₂. This work provides a more profound understanding of defect engineering for the design of highly active catalysts.

Figure 16. (a) Top view of (001) planes and side view of electron localization function maps. (b) Bader charges of atoms around vacancy in MoS₂ (perfect MoS₂), S-MoS₂ (V_{MoS_2} -MoS₂) and M-MoS₂ (V_{MoS_5} -MoS₂). (c) Unoccupied orbital distribution near Fermi level of MoS₂, S-MoS₂ and M-MoS₂ (red arrow denotes H-adsorption site). (d) Schematic diagram of orbital interaction under different conditions. (e) ICOHP values of H adsorption on MoS₂, S-MoS₂ and M-MoS₂ (bonding and antibonding states in ICOHP are depicted in red and blue, respectively). (f) Linear sweep voltammetry (LSV) curves in 0.5M H₂SO₄ with scan rate of 5 mV·s⁻¹ (inset: overpotential values at 10 mA·cm⁻²). (g) Tafel slopes. (h) Long-term stability [106].

Mo-vacancy engineering has also been considered as a good method to improve metal sulfides for energy storage and conversion [107–109] and especially for electrocatalysis. Ge et al. [108] developed abundant Mo vacancies in a MoS₂-based composite. Experimental and theoretical calculations revealed that Mo vacancies modulated the electronic structure of S sites to regulate the free energy of H adsorption, thus enhancing catalytic HER. Shi et al. [109] reported a Frenkel-defected monolayer MoS₂ catalyst, in which S and Mo vacancies co-existed in MoS₂ to generate charge distributions. The obtained Frenkel-defected MoS₂ exhibited an outstanding HER activity with a low overpotential of 164 mV.

4.2.5. Element doping

In electrocatalysis, element doping has been deemed to be an effective method to regulate active sites of catalysts for various reactions. Element doping comprises two types: metal doping and heteroatom doping (nonmetal doping). Metal doping (e.g., Zn, Co, Ni, etc.) [110–113] can effectively adjust the electronic structure of Mo sites in MoS_2 to promote high HER performance. For instance, Xu et al. [110] proposed transition metal Zn doping of MoS_2 to engineer its energy level for efficient HER. They found that Zn doping provided an energy level matching the HER's kinetic acceleration, resulting in a superior electrochemical HER activity. Xue et al. [112] developed ultra-small Ni-doped MoS2 nanosheets on hollow carbon microtubes. The results confirmed that moderate Ni doping tuned the electronic structure of active sites in MoS₂. As a result, the obtained catalyst exhibited excellent activity with enhanced HER kinetics, requiring a low overpotential of 88 mV at 10 mA·cm⁻² and demonstrating better stability in 0.5M H₂SO₄. Kong et al. [114] used rare earth Ce for a doping strategy to prepare Ce-doped MoS₂. The Ce-doped MoS₂ was rich in defects and regulated the electronic structure, further promoting HER performance with a small overpotential of 113.78 mV.

Heteroatom doping (N, F, P, etc.) [115–119] for enhancing catalytic HER has also received great attention. Li et al. reported N-doped MoS₂, fabricated via a simple one-step hydrothermal strategy, as an efficient HER catalyst [115]. The N doping produced rich S defects to expose Mo sites and adjust the electron density of S atoms to activate S atoms as active sites. The N-doped MoS₂ revealed a much lower overpotential of 168 mV at 10 mA·cm⁻² than that of pure MoS₂. Zhang et al. [118] developed F-doped MoS₂ with controllable active sites by using a plasma etching strategy. F atoms possess larger electronegativity than S atoms, thus leading to more moderate-free-energy carriers for H* intermediates and delivering five-fold activity enhancement for HER. Shi et al. [119] constructed P-doped 2H-MoS₂ nanoflowers with a crystalline-amorphous heterostructure via a simple calcination method. Rich S vacancies were generated from the P doping. Benefiting from P doping, the crystalline-amorphous heterostructure and S vacancies, the P-doped 2H-MoS₂ demonstrated pH-universal HER activity and excellent stability.

4.2.6. Compound construction by coupling with conductive materials

Although MoS₂ has been regarded as a promising HER electrocatalyst, its low number of active edge sites and its semiconductor feature result in a relatively low activity toward HER. Compound construction by coupling MoS₂ with conductive graphene [120,121], carbon nanotube [122,123], graphdiyne [124,125], etc., has also been reported as a good method to improve HER performance. The unique synergistic effect can be generated to modulate MoS₂ for efficient HER. A rational design of MoS₂-based compounds can adjust the conductivity and expose the active edge sites of MoS₂ [124,126,127]. Li et al. [120] synthesized MoS₂@reduced graphene oxide (RGO) as a highly active HER electrocatalyst. The unique synergistic effect between MoS₂ with RGO enhanced the HER activity with a small overpotential of 64 mV at 10 mA·cm⁻². Wu et al. [128] reported hierarchical MoS₂/Ti₃C₂-MXene@C compounds with a good catalytic HER. The results revealed that the MoS₂/Ti₃C₂-MXene@C showed greatly improved electrical conductivity and structural stability. The synergy of compounds also promotes the HER kinetics of MoS₂, thus leading to an outstanding HER performance. Graphdiyne, with its unique atomic arrangement, good conductivity and abundant natural pore structure, has attracted great attention. Hui's group [125] reported a simple strategy to synthesize graphdiyne-encapsulated MoS₂ nanosheets on carbon fiber (GDY-MoS₂ NS/CF), as shown in **Figure 17(a–c)**. It can be clearly seen in **Figure 17(d)** that the GDY-MoS2 NS/CF had the best catalytic activity among all catalysts, exhibiting a high current density (*J*) at the low overpotential (η). The experimental and theoretical calculations verified that graphdiyne on the surface of MoS₂ induced a phase transformation from 2H-MoS₂ to 1T-MoS₂ and decreased the free energy for H adsorption (**Figures 17(e,f)**). Song et al. [126] found that the construction of MoS₂@carbon quantum dots (CQDs) enabled hydrogen spillover to accelerate HER activity. The CQDs on the surface of MoS₂ led to charge redistribution and electrons gradually transferring from C sites in the CQDs to S sites in MoS₂, promoting hydrogen spillover.

Figure 17. (a–c) SEM images of GDY-MoS₂ NS/CF. **(d)** LSV curves in alkaline solution. **(e)** Top view of optimized structure of GDY-MoS₂. **(f)** Free energy diagram of HER [125].

5. Conclusion and prospects

This review summarized the recent progress and improved strategies of MoS_2 for photocatalytic HER and electrocatalytic HER. For photocatalytic HER, many novel strategies have been proposed to enhance the photocatalytic activity of MoS_2 , such as surface engineering, heterostructure construction and defect engineering. These approaches have led to significant improvements in the efficiency of MoS_2 -based photocatalysts. In addition, considerable efforts have also focused on improving the light absorption range of MoS_2 photocatalysts through bandgap engineering and doping with heteroatoms, which allow for more efficient utilization of solar energy for photocatalytic reactions. Some new synthesis methods and surface passivation techniques have also been found to decrease the photo-corrosion of MoS₂ under light conditions and promote long-term performance. Also, there has been significant progress in MoS₂ as an electrocatalyst in electrocatalytic hydrogen production. The edge sites of MoS₂ serve as active sites for catalytic HER, and MoS₂ exhibits high catalytic HER activity under both acidic and alkaline conditions. The electronic structure of MoS₂ can be manipulated via morphology tuning, element doping, nanostructure design, heterostructure construction and chemical composition construction to accelerate its electrocatalytic HER activity.

Overall, although recent research works on MoS_2 for photo/electrocatalysis have effectively enhanced its HER activity, which is even close to those of many advanced HER catalysts, there are still some issues during photo/electrocatalysis. New sustainable synthesis methods for MoS₂ should be developed to minimize the use of toxic precursors and energy-intensive processes, which can contribute to the largescale preparation of MoS₂ catalysts. Efforts should be devoted to enhancing the catalytic activity of MoS₂ catalysts for HER. Specially, the electrocatalytic HER performance of MoS₂ catalysts still lags behind those of commercial Pt-based catalysts. It is urgent to further investigate the fundamental catalytic mechanisms of MoS₂ for HER through operando characterization techniques and theoretical modeling, which can provide insights into the structure-property relationships and guide the rational design of the catalysts. In addition, practical applications require catalysts with excellent long-term stability and strong corrosion resistance, i.e., not limited to only tens of hours in the laboratory. Despite the efficient utilization of 2D MoS_2 for electrocatalysis and photocatalysis, enormous challenges remain, and ongoing research is expected to make significant progress soon.

Funding: This work was supported by the National Natural Science Foundation of China (Grant No. 22202042 and No. 22308070), the Guangdong Basic and Applied Basic Research Foundation (Grant No. 2022A1515140012), the Yunnan Fundamental Research Projects (Grant No. 202401CF070036), and the China Postdoctoral Science Foundation (Grant No. 2023M740794).

Conflict of interest: The authors declare no conflict of interest.

References

- Li R, Kuang P, Wageh S, et al. Potential-dependent reconstruction of Ni-based cuboid arrays for highly efficient hydrogen evolution coupled with electro-oxidation of organic compound. Chemical Engineering Journal. 2023; 453: 139797. doi: 10.1016/j.cej.2022.139797
- Lu G, Wang Z, Bhatti UH, et al. Recent progress in carbon dioxide capture technologies: A review. Clean Energy Science and Technology. 2023; 1(1). doi: 10.18686/cest.v1i1.32
- 3. Jiehui Z, Su Y, Wang W, et al. Hydrogen-electricity coupling energy storage systems: Models, applications, and deep reinforcement learning algorithms. Clean Energy Science and Technology. 2024; 2(1): 96. doi: 10.18686/cest.v2i1.96
- 4. Zhang Y, Xiao Y, Abuelgasim S, et al. A brief review of hydrogen production technologies. Clean Energy Science and Technology. 2024; 2(1): 117. doi: 10.18686/cest.v2i1.117
- 5. Gu X, Lin S, Qi K, et al. Application of tungsten oxide and its composites in photocatalysis. Separation and Purification Technology. 2024; 345: 127299. doi: 10.1016/j.seppur.2024.127299

- 6. Qureshi F, Yusuf M, Pasha AA, et al. Sustainable and energy efficient hydrogen production via glycerol reforming techniques: A review. International Journal of Hydrogen Energy. 2022; 47(98): 41397-41420. doi: 10.1016/j.ijhydene.2022.04.010
- 7. Chen J, Cao J, Zhou J, et al. Mechanism of highly enhanced hydrogen storage by two-dimensional 1T' MoS₂. Physical Chemistry Chemical Physics. 2020; 22(2): 430-436. doi: 10.1039/c9cp04402g
- 8. Qi K, Zhuang C, Zhang M, et al. Sonochemical synthesis of photocatalysts and their applications. Journal of Materials Science & Technology. 2022; 123: 243-256. doi: 10.1016/j.jmst.2022.02.019
- 9. Zhang J, Bifulco A, Amato P, et al. Copper indium sulfide quantum dots in photocatalysis. Journal of Colloid and Interface Science. 2023; 638: 193-219. doi: 10.1016/j.jcis.2023.01.107
- Zhang J, Zhao Y, Qi K, et al. CuInS₂ quantum-dot-modified g-C₃N₄ S-scheme heterojunction photocatalyst for hydrogen production and tetracycline degradation. Journal of Materials Science & Technology. 2024; 172: 145-155. doi: 10.1016/j.jmst.2023.06.042
- Pan J, Shen S, Chen L, et al. Core–Shell Photoanodes for Photoelectrochemical Water Oxidation. Advanced Functional Materials. 2021; 31(36). doi: 10.1002/adfm.202104269
- Pan J, Wang B, Wang J, et al. Activity and Stability Boosting of an Oxygen-Vacancy-Rich BiVO₄ Photoanode by NiFe-MOFs Thin Layer for Water Oxidation. Angewandte Chemie International Edition. 2020; 60(3): 1433-1440. doi: 10.1002/anie.202012550
- Pan J, Wang B, Shen S, et al. Introducing Bidirectional Axial Coordination into BiVO₄@Metal Phthalocyanine Core–Shell Photoanodes for Efficient Water Oxidation. Angewandte Chemie International Edition. 2023; 62(38). doi: 10.1002/anie.202307246
- Yang R, Fan Y, Zhang Y, et al. 2D Transition Metal Dichalcogenides for Photocatalysis. Angewandte Chemie International Edition. 2023; 62(13). doi: 10.1002/anie.202218016
- 15. Li Q, Huang L, Dai W, et al. Controlling 1T/2H heterophase junctions in the MoS₂ microsphere for the highly efficient photocatalytic hydrogen evolution. Catalysis Science & Technology. 2021; 11(24): 7914-7921. doi: 10.1039/d1cy01340h
- Kuc A, Heine T. The electronic structure calculations of two-dimensional transition-metal dichalcogenides in the presence of external electric and magnetic fields. Chemical Society Reviews. 2015; 44(9): 2603-2614. doi: 10.1039/c4cs00276h
- 17. Li Y, Zhang Y, Tong X, et al. Recent progress on the phase modulation of molybdenum disulphide/diselenide and their applications in electrocatalysis. Journal of Materials Chemistry A. 2021; 9(3): 1418-1428. doi: 10.1039/d0ta08514f
- Fu Q, Han J, Wang X, et al. 2D Transition Metal Dichalcogenides: Design, Modulation, and Challenges in Electrocatalysis. Advanced Materials. 2020; 33(6). doi: 10.1002/adma.201907818
- 19. Wu W, Niu C, Wei C, et al. Activation of MoS₂ Basal Planes for Hydrogen Evolution by Zinc. Angewandte Chemie International Edition. 2019; 58(7): 2029-2033. doi: 10.1002/anie.201812475
- 20. Liang Z, Xue Y, Wang X, et al. Co doped MoS₂ as cocatalyst considerably improved photocatalytic hydrogen evolution of g-C₃N₄ in an alkalescent environment. Chemical Engineering Journal. 2021; 421: 130016. doi: 10.1016/j.cej.2021.130016
- Mohan M, Shetti NP, Aminabhavi TM. Phase dependent performance of MoS₂ for supercapacitor applications. Journal of Energy Storage. 2023; 58: 106321. doi: 10.1016/j.est.2022.106321
- Fujishima A, Honda K. Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature. 1972; 238(5358): 37-38. doi: 10.1038/238037a0
- 23. Chen F, Zhang Y, Huang H. Layered photocatalytic nanomaterials for environmental applications. Chinese Chemical Letters. 2023; 34(3): 107523. doi: 10.1016/j.cclet.2022.05.037
- 24. Cheng XM, Zhao J, Sun WY. Facet-Engineering of Materials for Photocatalytic Application: Status and Future Prospects. EnergyChem. 2022; 4(5): 100084. doi: 10.1016/j.enchem.2022.100084
- Ali SA, Ahmad T. Enhanced hydrogen generation via overall water splitting using novel MoS₂-BN nanoflowers assembled TiO₂ ternary heterostructures. International Journal of Hydrogen Energy. 2023; 48(58): 22044-22059. doi: 10.1016/j.ijhydene.2023.03.118
- Ma J, Xu L, Yin Z, et al. "One stone four birds" design atom co-sharing BiOBr/Bi₂S₃ S-scheme heterojunction photothermal synergistic enhanced full-spectrum photocatalytic activity. Applied Catalysis B: Environmental. 2024; 344: 123601. doi: 10.1016/j.apcatb.2023.123601
- Dong X, Xu L, Ma J, et al. Enhanced interfacial charge transfer and photothermal effect via in-situ construction of atom cosharing Bi plasmonic/Bi₄O₅Br₂ nanosheet heterojunction towards improved full-spectrum photocatalysis. Chemical Engineering Journal. 2023; 459: 141557. doi: 10.1016/j.cej.2023.141557

- Li Y, Ma J, Xu L, et al. Enhancement of Charge Separation and NIR Light Harvesting through Construction of 2D–2D Bi₄O₅I₂/BiOBr: Yb³⁺, Er³⁺ Z-Scheme Heterojunctions for Improved Full-Spectrum Photocatalytic Performance. Advanced Science. 2023; 10(13). doi: 10.1002/advs.202207514
- 29. Kudo A, Miseki Y. Heterogeneous photocatalyst materials for water splitting. Chem Soc Rev. 2009; 38(1): 253-278. doi: 10.1039/b800489g
- 30. Gao W, Zhang S, Wang G, et al. A review on mechanism, applications and influencing factors of carbon quantum dots based photocatalysis. Ceramics International. 2022; 48(24): 35986-35999. doi: 10.1016/j.ceramint.2022.10.116
- Zhang C, Li Y, Li M, et al. Continuous photocatalysis via photo-charging and dark-discharging for sustainable environmental remediation: Performance, mechanism, and influencing factors. Journal of Hazardous Materials. 2021; 420: 126607. doi: 10.1016/j.jhazmat.2021.126607
- 32. Hong M, Shi J, Huan Y, et al. Microscopic insights into the catalytic mechanisms of monolayer MoS2 and its heterostructures in hydrogen evolution reaction. Nano Research. 2019; 12(9): 2140-2149. doi: 10.1007/s12274-019-2370-3
- 33. Li S, Sun J, Guan J. Strategies to improve electrocatalytic and photocatalytic performance of two-dimensional materials for hydrogen evolution reaction. Chinese Journal of Catalysis. 2021; 42: 511-556. doi:10.1016/S1872-2067(20)63693-2
- Zong X, Wu G, Yan H, et al. Photocatalytic H2 Evolution on MoS₂/CdS Catalysts under Visible Light Irradiation. The Journal of Physical Chemistry C. 2010; 114(4): 1963-1968. doi: 10.1021/jp904350e
- Chen J, Wu X, Yin L, et al. One-pot Synthesis of CdS Nanocrystals Hybridized with Single-Layer Transition-Metal Dichalcogenide Nanosheets for Efficient Photocatalytic Hydrogen Evolution. Angewandte Chemie International Edition. 2014; 54(4): 1210-1214. doi: 10.1002/anie.201410172
- Kang Y, Gong Y, Hu Z, et al. Plasmonic hot electron enhanced MoS₂ photocatalysis in hydrogen evolution. Nanoscale. 2015; 7(10): 4482-4488. doi: 10.1039/c4nr07303g
- 37. Liu C, Wang L, Tang Y, et al. Vertical single or few-layer MoS₂ nanosheets rooting into TiO₂ nanofibers for highly efficient photocatalytic hydrogen evolution. Applied Catalysis B: Environmental. 2015; 164: 1-9. doi: 10.1016/j.apcatb.2014.08.046
- Xue Y, Min S, Meng J, et al. Light-induced confined growth of amorphous Co doped MoSx nanodots on TiO₂ nanoparticles for efficient and stable in situ photocatalytic H₂ evolution. International Journal of Hydrogen Energy. 2019; 44(16): 8133-8143. doi: 10.1016/j.ijhydene.2019.02.057
- Alharthi FA, Hasan I. Visible light-driven efficient photocatalytic hydrogen production using nickel-doped molybdenum disulfide (Ni@MoS₂) nanoflowers. Journal of Materials Science. 2024; 59(8): 3394-3405. doi: 10.1007/s10853-024-09435-5
- 40. Sorgenfrei NLAN, Giangrisostomi E, Jay RM, et al. Photodriven Transient Picosecond Top-Layer Semiconductor to Metal Phase-Transition in p-Doped Molybdenum Disulfide. Advanced Materials. 2021; 33(14). doi: 10.1002/adma.202006957
- Xin X, Song Y, Guo S, et al. One-step synthesis of P-doped MoS₂ for efficient photocatalytic hydrogen production. Journal of Alloys and Compounds. 2020; 829: 154635. doi: 10.1016/j.jallcom.2020.154635
- 42. Xu ML, Tang X, Wang Y, et al. Phosphorus-doped molybdenum disulfide facilitating the photocatalytic hydrogen production activity of CdS nanorod. New Journal of Chemistry. 2019; 43(14): 5335-5340. doi: 10.1039/c9nj00411d
- 43. Wang L, Xie L, Zhao W, et al. Oxygen-facilitated dynamic active-site generation on strained MoS₂ during photo-catalytic hydrogen evolution. Chemical Engineering Journal. 2021; 405: 127028. doi: 10.1016/j.cej.2020.127028
- 44. Jaramillo TF, Jørgensen KP, Bonde J, et al. Identification of Active Edge Sites for Electrochemical H₂ Evolution from MoS₂ Nanocatalysts. Science. 2007; 317(5834): 100-102. doi: 10.1126/science.1141483
- 45. Hinnemann B, Moses PG, Bonde J, et al. Biomimetic Hydrogen Evolution: MoS₂ Nanoparticles as Catalyst for Hydrogen Evolution. Journal of the American Chemical Society. 2005; 127(15): 5308-5309. doi: 10.1021/ja0504690
- 46. Li Y, Wu S, Zheng J, et al. 2D photocatalysts with tuneable supports for enhanced photocatalytic water splitting. Materials Today. 2020; 41: 34-43. doi: 10.1016/j.mattod.2020.05.018
- 47. Zhou X, Hao H, Zhang YJ, et al. Patterning of transition metal dichalcogenides catalyzed by surface plasmons with atomic precision. Chem. 2021; 7(6): 1626-1638. doi: 10.1016/j.chempr.2021.03.011
- 48. Liu J, Liu H, Peng W, et al. High-yield exfoliation of MoS₂ (WS₂) monolayers towards efficient photocatalytic hydrogen evolution. Chemical Engineering Journal. 2022; 431: 133286. doi: 10.1016/j.cej.2021.133286
- 49. Li X, Sun X, Yu H, et al. Pseudo metallic (1T) molybdenum disulfide for efficient photo/electrocatalytic water splitting. Applied Catalysis B: Environmental. 2022; 307: 121156. doi: 10.1016/j.apcatb.2022.121156
- 50. Hu X, Jin J, Wang Y, et al. Au/MoS₂ tips as auxiliary rate aligners for the photocatalytic generation of syngas with a tunable composition. Applied Catalysis B: Environmental. 2022; 308: 121219. doi: 10.1016/j.apcatb.2022.121219

- 51. Parzinger E, Miller B, Blaschke B, et al. Photocatalytic Stability of Single- and Few-Layer MoS₂. ACS Nano. 2015; 9(11): 11302-11309. doi: 10.1021/acsnano.5b04979
- 52. Peng R, Ma X, Hood ZD, et al. Synergizing plasmonic Au nanocages with 2D MoS₂ nanosheets for significant enhancement in photocatalytic hydrogen evolution. Journal of Materials Chemistry A. 2023; 11(31): 16714-16723. doi: 10.1039/d3ta01657a
- 53. Zhao X, Chen S, Yin H, et al. Perovskite Microcrystals with Intercalated Monolayer MoS₂ Nanosheets as Advanced Photocatalyst for Solar-Powered Hydrogen Generation. Matter. 2020; 3(3): 935-949. doi: 10.1016/j.matt.2020.07.004
- Guan W, Li Y, Zhong Q, et al. Fabricating MAPbI₃/MoS₂ Composites for Improved Photocatalytic Performance. Nano Letters. 2020; 21(1): 597-604. doi: 10.1021/acs.nanolett.0c04073
- 55. Khalid NR, Israr Z, Tahir MB, et al. Highly efficient Bi₂O₃/MoS₂ p-n heterojunction photocatalyst for H₂ evolution from water splitting. International Journal of Hydrogen Energy. 2020; 45(15): 8479-8489. doi: 10.1016/j.ijhydene.2020.01.031
- Song T, Wang J, Su L, et al. Promotion effect of rhenium on MoS₂/ReS₂@CdS nanostructures for photocatalytic hydrogen production. Molecular Catalysis. 2021; 516: 111939. doi: 10.1016/j.mcat.2021.111939
- 57. Zhang J, Xing C, Shi F. MoS₂/Ti₃C₂ heterostructure for efficient visible-light photocatalytic hydrogen generation. International Journal of Hydrogen Energy. 2020; 45(11): 6291-6301. doi: 10.1016/j.ijhydene.2019.12.109
- 58. Rothfuss ARM, Ayala JR, Handy JV, et al. Linker-Assisted Assembly of Ligand-Bridged CdS/MoS₂ Heterostructures: Tunable Light-Harvesting Properties and Ligand-Dependent Control of Charge-Transfer Dynamics and Photocatalytic Hydrogen Evolution. ACS Applied Materials & Interfaces. 2023; 15(33): 39966-39979. doi: 10.1021/acsami.3c06722
- Ou-Yang H, Xu H, Zhang X, et al. Selective-Epitaxial Hybrid of Tripartite Semiconducting Sulfides for Enhanced Solar-to-Hydrogen Conversion. Small. 2022; 18(38). doi: 10.1002/smll.202202109
- 60. Yanalak G, Koç BK, Yılmaz S, et al. The effect of Ni and Co co-catalysts on the catalytic activity of mesoporous graphitic carbon nitride/black phosphorus/molybdenum disulfide heterojunctions in solar-driven hydrogen evolution. Journal of Environmental Chemical Engineering. 2023; 11(5): 111084. doi: 10.1016/j.jece.2023.111084
- Peng R, Liang L, Hood ZD, et al. In-Plane Heterojunctions Enable Multiphasic Two-Dimensional (2D) MoS₂ Nanosheets As Efficient Photocatalysts for Hydrogen Evolution from Water Reduction. ACS Catalysis. 2016; 6(10): 6723-6729. doi: 10.1021/acscatal.6b02076
- 62. Das S, Sharma U, Mukherjee B, et al. Polygonal gold nanocrystal induced efficient phase transition in 2D-MoS₂ for enhancing photo-electrocatalytic hydrogen generation. Nanotechnology. 2023; 34(14): 145202. doi: 10.1088/1361-6528/acade6
- Kin X, Song Y, Guo S, et al. In-situ growth of high-content 1T phase MoS₂ confined in the CuS nanoframe for efficient photocatalytic hydrogen evolution. Applied Catalysis B: Environmental. 2020; 269: 118773. doi: 10.1016/j.apcatb.2020.118773
- 64. Liang Z, Xue Y, Wang X, et al. Structure engineering of 1T/2H multiphase MoS₂ via oxygen incorporation over 2D layered porous g-C3N4 for remarkably enhanced photocatalytic hydrogen evolution. Materials Today Nano. 2022; 18: 100204. doi: 10.1016/j.mtnano.2022.100204
- 65. Zhao Y, Gao J, Bian X, et al. From the perspective of experimental practice: High-throughput computational screening in photocatalysis. Green Energy & Environment. 2024; 9(1): 1-6. doi: 10.1016/j.gee.2023.05.008
- 66. Xu C, Zhou G, Alexeev EM, et al. Ultrafast Electronic Relaxation Dynamics of Atomically Thin MoS₂ Is Accelerated by Wrinkling. ACS Nano. 2023; 17(17): 16682-16694. doi: 10.1021/acsnano.3c02917
- 67. Zhou P, Navid IA, Ma Y, et al. Solar-to-hydrogen efficiency of more than 9% in photocatalytic water splitting. Nature. 2023; 613(7942): 66-70. doi: 10.1038/s41586-022-05399-1
- 68. Zhao Y, Ding C, Zhu J, et al. A Hydrogen Farm Strategy for Scalable Solar Hydrogen Production with Particulate Photocatalysts. Angewandte Chemie International Edition. 2020; 59(24): 9653-9658. doi: 10.1002/anie.202001438
- 69. Zhai W, Ma Y, Chen D, et al. Recent progress on the long-term stability of hydrogen evolution reaction electrocatalysts. InfoMat. 2022; 4(9). doi: 10.1002/inf2.12357
- 70. Diyali S, Diyali N, Biswas B. Coordination-driven electrocatalysts as an evolving wave of enthusiasm for sustainable hydrogen production. Coordination Chemistry Reviews. 2024; 500: 215496. doi: 10.1016/j.ccr.2023.215496
- Zhang J, Wu J, Guo H, et al. Unveiling Active Sites for the Hydrogen Evolution Reaction on Monolayer MoS₂. Advanced Materials. 2017; 29(42). doi: 10.1002/adma.201701955
- 72. Chen J, Liu G, Zhu Y, et al. Ag@MoS₂ Core–Shell Heterostructure as SERS Platform to Reveal the Hydrogen Evolution Active Sites of Single-Layer MoS₂. Journal of the American Chemical Society. 2020; 142(15): 7161-7167. doi: 10.1021/jacs.0c01649

- Ekspong J, Sharifi T, Shchukarev A, et al. Stabilizing Active Edge Sites in Semicrystalline Molybdenum Sulfide by Anchorage on Nitrogen-Doped Carbon Nanotubes for Hydrogen Evolution Reaction. Advanced Functional Materials. 2016; 26(37): 6766-6776. doi: 10.1002/adfm.201601994
- 74. Li H, Tsai C, Koh AL, et al. Correction: Corrigendum: Activating and optimizing MoS₂ basal planes for hydrogen evolution through the formation of strained sulphur vacancies. Nature Materials. 2016; 15(3): 364-364. doi: 10.1038/nmat4564
- 75. Kim Y, Jackson DHK, Lee D, et al. In Situ Electrochemical Activation of Atomic Layer Deposition Coated MoS₂ Basal Planes for Efficient Hydrogen Evolution Reaction. Advanced Functional Materials. 2017; 27(34). doi: 10.1002/adfm.201701825
- 76. Kibsgaard J, Chen Z, Reinecke BN, et al. Engineering the surface structure of MoS₂ to preferentially expose active edge sites for electrocatalysis. Nature Materials. 2012; 11(11): 963-969. doi: 10.1038/nmat3439
- 77. Tsai C, Li H, Park S, et al. Electrochemical generation of sulfur vacancies in the basal plane of MoS₂ for hydrogen evolution. Nature Communications. 2017; 8(1). doi: 10.1038/ncomms15113
- 78. Liu X, Jiang X, Shao G, et al. Activating the Electrocatalysis of MoS2 Basal Plane for Hydrogen Evolution via Atomic Defect Configurations. Small. 2022; 18(22). doi: 10.1002/smll.202200601
- 79. Man P, Jiang S, Leung KH, et al. Salt-Induced High-Density Vacancy-Rich 2D MoS₂ for Efficient Hydrogen Evolution. Advanced Materials. 2023; 36(17). doi: 10.1002/adma.202304808
- 80. Xiao W, Liu P, Zhang J, et al. Dual-Functional N Dopants in Edges and Basal Plane of MoS₂ Nanosheets Toward Efficient and Durable Hydrogen Evolution. Advanced Energy Materials. 2016; 7(7). doi: 10.1002/aenm.201602086
- Liu P, Zhu J, Zhang J, et al. P Dopants Triggered New Basal Plane Active Sites and Enlarged Interlayer Spacing in MoS₂ Nanosheets toward Electrocatalytic Hydrogen Evolution. ACS Energy Letters. 2017; 2(4): 745-752. doi: 10.1021/acsenergylett.7b00111
- Yang YQ, Zhao CX, Bai SY, et al. Activating MoS2 basal planes for hydrogen evolution through the As doping and strain. Physics Letters A. 2019; 383(24): 2997-3000. doi: 10.1016/j.physleta.2019.06.036
- Anjum MAR, Jeong HY, Lee MH, et al. Efficient Hydrogen Evolution Reaction Catalysis in Alkaline Media by All-in-One MoS₂ with Multifunctional Active Sites. Advanced Materials. 2018; 30(20). doi: 10.1002/adma.201707105
- Lukowski MA, Daniel AS, Meng F, et al. Enhanced Hydrogen Evolution Catalysis from Chemically Exfoliated Metallic MoS₂ Nanosheets. Journal of the American Chemical Society. 2013; 135(28): 10274-10277. doi: 10.1021/ja404523s
- Yin Y, Han J, Zhang Y, et al. Contributions of Phase, Sulfur Vacancies, and Edges to the Hydrogen Evolution Reaction Catalytic Activity of Porous Molybdenum Disulfide Nanosheets. Journal of the American Chemical Society. 2016; 138(25): 7965-7972. doi: 10.1021/jacs.6b03714
- Chang K, Hai X, Pang H, et al. Targeted Synthesis of 2H- and 1T-Phase MoS₂ Monolayers for Catalytic Hydrogen Evolution. Advanced Materials. 2016; 28(45): 10033-10041. doi: 10.1002/adma.201603765
- Zhu J, Wang Z, Yu H, et al. Argon Plasma Induced Phase Transition in Monolayer MoS₂. Journal of the American Chemical Society. 2017; 139(30): 10216-10219. doi: 10.1021/jacs.7b05765
- 88. Liu Z, Zhao L, Liu Y, et al. Vertical nanosheet array of 1T phase MoS₂ for efficient and stable hydrogen evolution. Applied Catalysis B: Environmental. 2019; 246: 296-302. doi: 10.1016/j.apcatb.2019.01.062
- Li J, Listwan A, Liang J, et al. High proportion of 1 T phase MoS₂ prepared by a simple solvothermal method for highefficiency electrocatalytic hydrogen evolution. Chemical Engineering Journal. 2021; 422: 130100. doi: 10.1016/j.cej.2021.130100
- 90. Yang J, Xu Q, Zheng Y, et al. Phase Engineering of Metastable Transition Metal Dichalcogenides via Ionic Liquid Assisted Synthesis. ACS Nano. 2022; 16(9): 15215-15225. doi: 10.1021/acsnano.2c06549
- Ekspong J, Sandström R, Rajukumar LP, et al. Stable Sulfur-Intercalated 1T' MoS₂ on Graphitic Nanoribbons as Hydrogen Evolution Electrocatalyst. Advanced Functional Materials. 2018; 28(46). doi: 10.1002/adfm.201802744
- 92. Gao B, Zhao Y, Du X, et al. Electron injection induced phase transition of 2H to 1T MoS₂ by cobalt and nickel substitutional doping. Chemical Engineering Journal. 2021; 411: 128567. doi: 10.1016/j.cej.2021.128567
- 93. Jiang L, Zhang YJ, Luo XH, et al. Se and O co-insertion induce the transition of MoS₂ from 2H to 1T phase for designing high-active electrocatalyst of hydrogen evolution reaction. Chemical Engineering Journal. 2021; 425: 130611. doi: 10.1016/j.cej.2021.130611
- 94. Guo X, Song E, Zhao W, et al. Charge self-regulation in 1T^{**}-MoS₂ structure with rich S vacancies for enhanced hydrogen evolution activity. Nature Communications. 2022; 13(1). doi: 10.1038/s41467-022-33636-8

- 95. Yang Y, Zhang K, Lin H, et al. MoS₂–Ni₃S₂ Heteronanorods as Efficient and Stable Bifunctional Electrocatalysts for Overall Water Splitting. ACS Catalysis. 2017; 7(4): 2357-2366. doi: 10.1021/acscatal.6b03192
- 96. Kim M, Anjum MAR, Lee M, et al. Activating MoS₂ Basal Plane with Ni₂P Nanoparticles for Pt-Like Hydrogen Evolution Reaction in Acidic Media. Advanced Functional Materials. 2019; 29(10). doi: 10.1002/adfm.201809151
- Kim M, Anjum MAR, Choi M, et al. Covalent 0D–2D Heterostructuring of Co₉S₈–MoS₂ for Enhanced Hydrogen Evolution in All pH Electrolytes. Advanced Functional Materials. 2020; 30(40). doi: 10.1002/adfm.202002536
- Wang S, Zhang D, Li B, et al. Ultrastable In-Plane 1T–2H MoS₂ Heterostructures for Enhanced Hydrogen Evolution Reaction. Advanced Energy Materials. 2018; 8(25). doi: 10.1002/aenm.201801345
- 99. Cheng Z, Xiao Y, Wu W, et al. All-pH-Tolerant In-Plane Heterostructures for Efficient Hydrogen Evolution Reaction. ACS Nano. 2021; 15(7): 11417-11427. doi: 10.1021/acsnano.1c01024
- 100. Sun Z, Lin L, Yuan M, et al. Mott–Schottky heterostructure induce the interfacial electron redistribution of MoS₂ for boosting pH-universal hydrogen evolution with Pt-like activity. Nano Energy. 2022; 101: 107563. doi: 10.1016/j.nanoen.2022.107563
- 101. Li L, Qin Z, Ries L, et al. Role of Sulfur Vacancies and Undercoordinated Mo Regions in MoS₂ Nanosheets toward the Evolution of Hydrogen. ACS Nano. 2019; 13(6): 6824-6834. doi: 10.1021/acsnano.9b01583
- 102. Zhang W, Liao X, Pan X, et al. Superior Hydrogen Evolution Reaction Performance in 2H-MoS₂ to that of 1T Phase. Small. 2019; 15(31). doi: 10.1002/smll.201900964
- 103. Hou X, Zhou H, Zhao M, et al. MoS₂ Nanoplates Embedded in Co–N-Doped Carbon Nanocages as Efficient Catalyst for HER and OER. ACS Sustainable Chemistry & Engineering. 2020; 8(14): 5724-5733. doi: 10.1021/acssuschemeng.0c00810
- 104. Wang X, Zhang Y, Si H, et al. Single-Atom Vacancy Defect to Trigger High-Efficiency Hydrogen Evolution of MoS2. Journal of the American Chemical Society. 2020; 142(9): 4298-4308. doi: 10.1021/jacs.9b12113
- 105. Ye G, Gong Y, Lin J, et al. Defects Engineered Monolayer MoS₂ for Improved Hydrogen Evolution Reaction. Nano Letters. 2016; 16(2): 1097-1103. doi: 10.1021/acs.nanolett.5b04331
- 106. Zhan W, Zhai X, Li Y, et al. Regulating Local Atomic Environment around Vacancies for Efficient Hydrogen Evolution. ACS Nano. 2024; 18(14): 10312-10323. doi: 10.1021/acsnano.4c02283
- 107. Li Y, Zhang R, Zhou W, et al. Hierarchical MoS₂ Hollow Architectures with Abundant Mo Vacancies for Efficient Sodium Storage. ACS Nano. 2019; 13(5): 5533-5540. doi: 10.1021/acsnano.9b00383
- 108. Ge J, Chen Y, Zhao Y, et al. Activated MoS₂ by Constructing Single Atomic Cation Vacancies for Accelerated Hydrogen Evolution Reaction. ACS Applied Materials & Interfaces. 2022; 14(23): 26846-26857. doi: 10.1021/acsami.2c06708
- 109. Shi Y, Zhou Y, Yang DR, et al. Energy Level Engineering of MoS₂ by Transition-Metal Doping for Accelerating Hydrogen Evolution Reaction. Journal of the American Chemical Society. 2017; 139(43): 15479-15485. doi: 10.1021/jacs.7b08881
- 110. Xu J, Shao G, Tang X, et al. Frenkel-defected monolayer MoS₂ catalysts for efficient hydrogen evolution. Nature Communications. 2022; 13(1). doi: 10.1038/s41467-022-29929-7
- 111. Xiong Q, Wang Y, Liu P, et al. Cobalt Covalent Doping in MoS₂ to Induce Bifunctionality of Overall Water Splitting. Advanced Materials. 2018; 30(29). doi: 10.1002/adma.201801450
- 112. Xue Y, Bai X, Xu Y, et al. Vertically oriented Ni-doped MoS₂ nanosheets supported on hollow carbon microtubes for enhanced hydrogen evolution reaction and water splitting. Composites Part B: Engineering. 2021; 224: 109229. doi: 10.1016/j.compositesb.2021.109229
- 113. Li C, Zhu L, Wu Z, et al. Phase Engineering of W-Doped MoS₂ by Magneto-Hydrothermal Synthesis for Hydrogen Evolution Reaction. Small. 2023; 19(48). doi: 10.1002/smll.202303646
- 114. Kong L, Gao C, Liu Z, et al. Cerium-doped 1 T phase enriched MoS₂ flower-like nanoflakes for boosting hydrogen evolution reaction. Chemical Engineering Journal. 2024; 479: 147725. doi: 10.1016/j.cej.2023.147725
- 115. Li R, Yang L, Xiong T, et al. Nitrogen doped MoS₂ nanosheets synthesized via a low-temperature process as electrocatalysts with enhanced activity for hydrogen evolution reaction. Journal of Power Sources. 2017; 356: 133-139. doi: 10.1016/j.jpowsour.2017.04.060
- 116. Zhang P, Xu B, Chen G, et al. Large-scale synthesis of nitrogen doped MoS2 quantum dots for efficient hydrogen evolution reaction. Electrochimica Acta. 2018; 270: 256-263. doi: 10.1016/j.electacta.2018.03.097
- 117. Ge J, Zhang D, Jin J, et al. Oxygen atoms substituting sulfur atoms of MoS₂ to activate the basal plane and induce the phase transition for boosting hydrogen evolution. Materials Today Energy. 2021; 22: 100854. doi: 10.1016/j.mtener.2021.100854
- 118. Zhang R, Zhang M, Yang H, et al. Creating Fluorine-Doped MoS₂ Edge Electrodes with Enhanced Hydrogen Evolution Activity. Small Methods. 2021; 5(11). doi: 10.1002/smtd.202100612

- 119. Shi Y, Zhang D, Miao H, et al. Amorphous/2H-MoS₂ nanoflowers with P doping and S vacancies to achieve efficient pHuniversal hydrogen evolution at high current density. Science China Chemistry. 2022; 65(9): 1829-1837. doi: 10.1007/s11426-022-1287-4
- 120. Li F, Li J, Cao Z, et al. MoS₂ quantum dot decorated RGO: a designed electrocatalyst with high active site density for the hydrogen evolution reaction. Journal of Materials Chemistry A. 2015; 3(43): 21772-21778. doi: 10.1039/c5ta05219j
- 121. Biroju RK, Das D, Sharma R, et al. Hydrogen Evolution Reaction Activity of Graphene–MoS₂ van der Waals Heterostructures. ACS Energy Letters. 2017; 2(6): 1355-1361. doi: 10.1021/acsenergylett.7b00349
- 122. Zhang CL, Xie Y, Liu JT, et al. 1D Core–Shell MOFs derived CoP Nanoparticles-Embedded N-doped porous carbon nanotubes anchored with MoS₂ nanosheets as efficient bifunctional electrocatalysts. Chemical Engineering Journal. 2021; 419: 129977. doi: 10.1016/j.cej.2021.129977
- 123. Zhang X, Yang P, Jiang SP. Ni diffusion in vertical growth of MoS₂ nanosheets on carbon nanotubes towards highly efficient hydrogen evolution. Carbon. 2021; 175: 176-186. doi: 10.1016/j.carbon.2021.01.010
- 124. Yu H, Xue Y, Hui L, et al. Controlled Growth of MoS₂ Nanosheets on 2D N-Doped Graphdiyne Nanolayers for Highly Associated Effects on Water Reduction. Advanced Functional Materials. 2018; 28(19). doi: 10.1002/adfm.201707564
- 125. Hui L, Xue Y, He F, et al. Efficient hydrogen generation on graphdiyne-based heterostructure. Nano Energy. 2019; 55: 135-142. doi: 10.1016/j.nanoen.2018.10.062
- 126. Song L, Zhang X, Zhu S, et al. Hydrogen spillover effect enhanced by carbon quantum dots activated MoS₂. Carbon. 2022; 199: 63-69. doi: 10.1016/j.carbon.2022.07.071
- 127. Attanayake NH, Abeyweera SC, Thenuwara AC, et al. Vertically aligned MoS₂ on Ti₃C₂ (MXene) as an improved HER catalyst. Journal of Materials Chemistry A. 2018; 6(35): 16882-16889. doi: 10.1039/c8ta05033c
- 128. Wu X, Wang Z, Yu M, et al. Stabilizing the MXenes by Carbon Nanoplating for Developing Hierarchical Nanohybrids with Efficient Lithium Storage and Hydrogen Evolution Capability. Advanced Materials. 2017; 29(24). doi: 10.1002/adma.201607017